期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
AI-Powered Digital Twin Frameworks for Smart Grid Optimization and Real-Time Energy Management in Smart Buildings:A Survey
1
作者 Saeed Asadi Hajar Kazemi Naeini +4 位作者 Delaram Hassanlou Abolhassan Pishahang Saeid Aghasoleymani Najafabadi Abbas Sharifi Mohsen Ahmadi 《Computer Modeling in Engineering & Sciences》 2025年第11期1259-1301,共43页
The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solution... The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control. Through this synergy, DT–ML systems enhance energy prediction, occupant comfort, and automated fault detection, while also supporting broader sustainability goals. The review examines recent advances in DT–ML energy systems, with attention to enabling technologies such as IoT sensor networks, building energy management systems, edge–cloud computing, and advanced analytics. Key challenges including data interoperability, cybersecurity, scalability, and the need for standardized frameworks are critically discussed, along with emerging solutions such as federated learning and blockchain. Special focus is given to human-centric digital twin frameworks that integrate user comfort and behavioral adaptation into energy optimization strategies. The findings suggest that DT–ML integration, enabled by IoT sensor networks, has the potential to significantly reduce energy consumption, lower operational costs, and improve resilience in urban infrastructures. The paper concludes by outlining future research priorities, including decentralized learning models, universal data standards, enhanced privacy protocols, and expanding digital twin applications for distributed renewable energy resources. 展开更多
关键词 Digital twin machine learning smart grid smart buildings energy optimization IOT real-time monitoring SUSTAINABILITY
在线阅读 下载PDF
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
2
作者 Arbel Yaniv Yuval Beck 《Data Science and Management》 2025年第1期59-71,共13页
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on... This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system. 展开更多
关键词 Storage optimal scheduling real-time storage control PV-plus-storage management Forecast uncertainty compensation
在线阅读 下载PDF
A deep reinforcement learning approach to gasoline blending real-time optimization under uncertainty 被引量:1
3
作者 Zhiwei Zhu Minglei Yang +3 位作者 Wangli He Renchu He Yunmeng Zhao Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期183-192,共10页
The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization i... The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization in gasoline blending relies on accurate blending models and is challenged by stochastic disturbances.Thus,we propose a real-time optimization algorithm based on the soft actor-critic(SAC)deep reinforcement learning strategy to optimize gasoline blending without relying on a single blending model and to be robust against disturbances.Our approach constructs the environment using nonlinear blending models and feedstocks with disturbances.The algorithm incorporates the Lagrange multiplier and path constraints in reward design to manage sparse product constraints.Carefully abstracted states facilitate algorithm convergence,and the normalized action vector in each optimization period allows the agent to generalize to some extent across different target production scenarios.Through these well-designed components,the algorithm based on the SAC outperforms real-time optimization methods based on either nonlinear or linear programming.It even demonstrates comparable performance with the time-horizon based real-time optimization method,which requires knowledge of uncertainty models,confirming its capability to handle uncertainty without accurate models.Our simulation illustrates a promising approach to free real-time optimization of the gasoline blending process from uncertainty models that are difficult to acquire in practice. 展开更多
关键词 Deep reinforcement learning Gasoline blending real-time optimization PETROLEUM Computer simulation Neural networks
在线阅读 下载PDF
Real-Time Dynamic Multiobjective Path Planning:A Case Study
4
作者 Hongle Li SeongKi Kim 《Computers, Materials & Continua》 2025年第12期5571-5594,共24页
Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of v... Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of virtual environments.However,traditional algorithms are often limited to single-objective optimization and lack real-time adaptability to dynamic environments.This study addresses these limitations through a proposed realtime dynamic multiobjective(RDMO)path-planning algorithm based on an enhanced A^(*) framework.The proposed algorithm employs a queue-based structure and composite multiheuristic functions to dynamically manage game tasks and compute optimal paths under changing-map-connectivity conditions in real time.Simulation experiments are conducted using real-world road network data and benchmarked against mainstream hybrid approaches based on genetic algorithms(GAs)and simulated annealing(SA).The results show that the computational speed of the RDMO algorithm is 88 and 73 times faster than that of the GA-and SA-based solutions,respectively,while the total planned path length is reduced by 58%and 33%,respectively.In addition,the RDMO algorithm also shows excellent responsiveness to dynamic changes in map connectivity and can achieve real-time replanning with a minimal computational overhead.The research results prove that the RDMO algorithm provides a robust and efficient solution for multiobjective path planning in games and robotics applications and has a great application potential in improving system performance and user experience in related fields in the future. 展开更多
关键词 Multiobjective optimization path planning real-time system dynamic environments A*algorithm game artificial intelligence
在线阅读 下载PDF
Design optimization of quasi-rectangular tunnels based on hyperstatic reaction method and ensemble learning
5
作者 Tai-Tien Nguyen Ba-Trung Cao +2 位作者 Van-Vi Pham Hoang-Giang Bui Ngoc-Anh Do 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5398-5415,共18页
The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical ... The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical loads,an interior column is often installed at the center to enhance its load-bearing capacity.This study aims to develop a hyperstatic reaction method(HRM)for the analysis of deformation and structural integrity in this specific tunnel type.The computational model is validated through comparison with the corresponding finite element method(FEM)analysis.Following comprehensive validation,an ensemble machine learning(ML)model is proposed,using numerical benchmark data,to facilitate real-time design and optimization.Subsequently,three widely used ensemble models,i.e.random forest(RF),gradient boosting decision tree(GBDT),and extreme gradient boosting(XGBoost)are compared to identify the most efficient ML model for replacing the HRM model in the design optimization process.The performance metrics,such as the coefficient of determination R2 of about 0.999 and the mean absolute percentage error(MAPE)of about 1%,indicate that XGBoost outperforms the others,exhibiting excellent agreement with the HRM analysis.Additionally,the model demonstrates high computational efficiency,with prediction times measured in seconds.Finally,the HRM-XGBoost model is integrated with the well-known particle swarm optimization(PSO)for the real-time design optimization of quasi-rectangular tunnels,both with and without the interior column.A feature importance assessment is conducted to evaluate the sensitivity of design input features,enabling the selection of the most critical features for the optimization task. 展开更多
关键词 Hyperstatic reaction method(HRM) Quasi-rectangular tunnel Tunnel lining Numerical analysis real-time design optimization Extreme gradient boosting(XGBoost) Shapley additive explanations(SHAP)
在线阅读 下载PDF
Real-time optimization of energy consumption under adaptive cruise control for connected HEVs 被引量:5
6
作者 Jiangyan ZHANG Fuguo XU 《Control Theory and Technology》 EI CSCD 2020年第2期182-192,共11页
This paper presents a real-time energy optimization algorithm for a hybrid electric vehicle(HEV)that operates with adaptive cruise control(ACC).Real-time energy optimization is an essential ssue such that the HEV powe... This paper presents a real-time energy optimization algorithm for a hybrid electric vehicle(HEV)that operates with adaptive cruise control(ACC).Real-time energy optimization is an essential ssue such that the HEV powertrain system is as efficient as possible.With connected vehice technique,ACC system shows considerable potential of high energy eficiency.Combining a classical ACC algorithm,a two-level cooperative control scheme is constructed to realize real-time power distribution for the host HEV that operates in a vehicle platoon.The proposed control strategy actually provides a solution for an optimal control problem with multi objectives in terms of string stable of vehicle platoon and energy consumption minimization of the individual following vehicle.The string stability and the real-time optimization performance of the cooperative control system are confirmed by simulations with respect to several operating scenarios. 展开更多
关键词 Connected vehicle hybrid electric vehicle adaptive cruise control real-time optimization
原文传递
Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements 被引量:4
7
作者 Jinsong Li Hao Liu +2 位作者 Wenzhuo Li Tianshu Bi Mingyang Zhao 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期131-142,共12页
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ... The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests. 展开更多
关键词 Power system Data network Wide-frequency information real-time system Traffic analysis optimization strategy
在线阅读 下载PDF
Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty 被引量:2
8
作者 Zhong-Zheng Wang Kai Zhang +6 位作者 Guo-Dong Chen Jin-Ding Zhang Wen-Dong Wang Hao-Chen Wang Li-Ming Zhang Xia Yan Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期261-276,共16页
Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality r... Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity. 展开更多
关键词 Production optimization Deep reinforcement learning Evolutionary algorithm real-time optimization optimization under uncertainty
原文传递
ROS2 Real-time Performance Optimization and Evaluation 被引量:2
9
作者 Yanlei Ye Zhenguo Nie +3 位作者 Xinjun Liu Fugui Xie Zihao Li Peng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期36-50,共15页
Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure ... Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure the reliability and determinism of system execution,a flexible real-time control system architecture and interaction algorithm are required.The ROS framework was designed to improve the reusability of robotic software development by providing a distributed structure,hardware abstraction,message-passing mechanism,and application prototypes.Rich ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux system.However,because of the fairness scheduling principle of the default Linux system design and the complexity of the kernel,the system does not have real-time computing.To achieve a balance between real-time and non-real-time computing,this paper uses the transmission mechanism of ROS2,combines it with the scheduling mechanism of the Linux operating system,and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2.The real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives,including throughput,transmission mode,QoS service quality,frequency,number of subscription nodes and EtherCAT master.This paper makes two significant contributions:firstly,it employs Preempt_RT to optimize the native ROS2 system,effectively enhancing the real-time performance of native ROS2 message transmission;secondly,it conducts a comprehensive evaluation of the real-time performance of both native and optimized ROS2 systems.This comparison elucidates the benefits of the optimized ROS2 architecture regarding real-time performance,with results vividly demonstrated through illustrative figures. 展开更多
关键词 ROS real-time system optimization Preempt_RT real-time performance evaluation of ROS2
在线阅读 下载PDF
A Novel Real-time Optimization Methodology for Chemical Plants 被引量:1
10
作者 黄静雯 李宏光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1059-1066,共8页
In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic natur... In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic nature of flying wild geese, a chemical plant optimization problem can be re-formulated as a combination of a multi-layer PGQ and a PGQ-Objective according to the relationship among process variables involved in the objective and constraints. Subsequently, chemical plant RTO solutions are converted into coordination issues among PGQs which could be dealt with in a novel way. Accordingly, theoretical definitions, adjustment rule and implementing procedures associated with the approach are explicitly introduced together with corresponding enabling algorithms. Finally, an exemplary chemical plant is employed to demonstrate the feasibility and validity of the contribution. 展开更多
关键词 real-time optimization chemical plants process goose queue multi-layer process goose queue
在线阅读 下载PDF
Multi-objective Optimization of Multi-Agent Elevator Group Control System Based on Real-time Particle Swarm Optimization Algorithm 被引量:3
11
作者 Yanwu Gu 《Engineering(科研)》 2012年第7期368-378,共11页
In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Opti... In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO. 展开更多
关键词 MULTI-AGENT SYSTEM ELEVATOR Group Control SYSTEM real-time Particle SWARM optimization Up-Peak Traffic
在线阅读 下载PDF
Real-Time Optimization Model for Continuous Reforming Regenerator
12
作者 Jiang Shubao Jiang Hongbo +1 位作者 Li Zhenming Tian Jianhui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期90-103,共14页
An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal colloca... An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal collocation method is less time-consuming and more accurate,which can meet the requirement of real-time optimization(RTO).In this paper,the equation-oriented method combined with the orthogonal collocation method and the finite difference method is adopted to build the RTO model for catalytic reforming regenerator.The orthogonal collocation method was adopted to discretize the differential equations and sequential quadratic programming(SQP)algorithm was used to solve the algebraic equations.The rate constants,active energy and reaction order were estimated,with the sum of relative errors between actual value and simulated value serving as optimization objective function.The model can quickly predict the fields of component concentration,temperature and pressure inside the regenerator under different conditions,as well as the real-time optimized conditions for industrial reforming regenerator. 展开更多
关键词 catalytic reforming regenerator KINETICS model orthogonal collocation method real-time optimization
在线阅读 下载PDF
Maneuver control at high angle of attack based on real-time optimization of integrated aero-propulsion
13
作者 Juan FANG Qiangang ZHENG +1 位作者 Changpeng CAI Haibo ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期173-188,共16页
To reduce the propulsion system installation thrust loss under high angle of attack maneuvering,a control method based on real-time optimization of the integrated aeropropulsion is proposed.Firstly,based on data fitti... To reduce the propulsion system installation thrust loss under high angle of attack maneuvering,a control method based on real-time optimization of the integrated aeropropulsion is proposed.Firstly,based on data fitting and physical principle,an integrated onboard model of propulsion system is established,which can calculate various performance parameters of the propulsion system in real time,and has high accuracy and real-time performance.Secondly,to improve the compatibility of optimization real-time performance and search accuracy,the online optimization control of aero-propulsion system is realized based on an improved trust region algorithm.Finally,by controlling the auxiliary intake valve,a good match between inlet and engine is realized,which solves the problems of intake flow reducing and total pressure recovery coefficient declining,and improves the installation performance of propulsion system.The simulation results indicate that,compared with the conventional independent engine control,the real-time integrated optimization method reduces the installed thrust loss by 3.61%under the design condition,and 4.58%under the off-design condition.Furthermore,the simulation on HIL(Hardware-In-theLoop)platform verifies the real-time performance of integrated optimization method. 展开更多
关键词 High angle of attack Inlet/engine integration real-time optimization Engine performance Auxiliary intake valve
原文传递
Remanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm 被引量:10
14
作者 周鲜成 赵志学 +1 位作者 周开军 贺彩虹 《Journal of Central South University》 SCIE EI CAS 2012年第2期482-487,共6页
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c... As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms. 展开更多
关键词 genetic particle swarm optimization closed-loop supply chain REMANUFACTURING network design reverse logistics
在线阅读 下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:7
15
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) real-time cutter-head torque prediction Bidirectional long short-term memory (BLSTM) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
在线阅读 下载PDF
Efficient Route Planning for Real-Time Demand-Responsive Transit
16
作者 Hongle Li SeongKi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第4期473-492,共20页
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d... Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility. 展开更多
关键词 Autonomous bus route planning real-time dynamic route planning path finding DRT bus route optimization sustainable public transport
在线阅读 下载PDF
Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty
17
作者 Qingrong Zeng Xiaochen Liu +2 位作者 Xuefeng Zhu Xiangkui Zhang Ping Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2065-2085,共21页
Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challe... Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challenge,we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty(CGAN-GP).This innovative method allows for nearly instantaneous prediction of optimized structures.Given a specific boundary condition,the network can produce a unique optimized structure in a one-to-one manner.The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization(SIMP)method.Subsequently,we design a conditional generative adversarial network and train it to generate optimized structures.To further enhance the quality of the optimized structures produced by CGAN-GP,we incorporate Pix2pixGAN.This augmentation results in sharper topologies,yielding structures with enhanced clarity,de-blurring,and edge smoothing.Our proposed method yields a significant reduction in computational time when compared to traditional topology optimization algorithms,all while maintaining an impressive accuracy rate of up to 85%,as demonstrated through numerical examples. 展开更多
关键词 real-time topology optimization conditional generative adversarial networks dimension curse CMES 2024 vol.141 no.3
在线阅读 下载PDF
Optimizing Real-Time Performance of 3D Virtual Mining Environment with MultiGen Creator 被引量:11
18
作者 WANGWei-chen JIANGXiao-hong +1 位作者 HANKe-qi HANWen-ji 《Computer Aided Drafting,Design and Manufacturing》 2004年第1期61-69,共9页
System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a ... System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a virtual mining system were discussed: optimizing 3D models to keep the polygon number in VR system within target hardware's processing ability; optimizing texture database to save texture memory with perfect visual effect; optimizing database hierarchy structure to accelerate model retrieval; and optimizing LOD hierarchy structure to speed up rendering. 展开更多
关键词 virtual mining system real-time performance optimization MultiGen creator
在线阅读 下载PDF
Combining machine learning and physics modeling to determine the geostress of reservoirs in real-time
19
作者 Quansheng Liu Fei Gao +1 位作者 Mengmeng Nie Jiangmei Qiao 《Intelligent Geoengineering》 2024年第1期69-77,共9页
Real-time updating of geological properties in reservoirs through monitoring data is critical for optimizing hydraulic fracturing.In this work,the ML-Physics method,which inherits the advantages of machine learning(ML... Real-time updating of geological properties in reservoirs through monitoring data is critical for optimizing hydraulic fracturing.In this work,the ML-Physics method,which inherits the advantages of machine learning(ML)and physical modeling,has been developed to determine the geological parameters with limited computational time,including farfield geostress,geostress in the vicinity of faults and rock material properties.The ML-Physics method consists of two stages:the preparation stage and the operation stage.During the preparation stage,which occurs before the in situ operation and is not constrained by computational time limitation,a surrogate artificial neural network(ANN)model is established.This ANN model captures the implicit relationship between geological parameters and monitoring data.During the operational stage,which is constrained by real-time requirements for the convenience of engineers in field work,inverse analysis with physical modeling and the surrogate ANN model is employed to determine geological parameters.In the context of ML-Physics method,the initial values of inverse iteration are chosen based on surrogate ANN results.The obtained geological parameters can be used for hydraulic fracturing analysis.This ML-Physics method demonstrates superior performance in terms of both accuracy and computational efficiency. 展开更多
关键词 ML-physics method Machine learning Inverse analysis Geostress Hydraulic fracturing real-time optimization
在线阅读 下载PDF
Research on Optimal Configuration of Energy Storage in Wind-Solar Microgrid Considering Real-Time Electricity Price
20
作者 Zhenzhen Zhang Qingquan Lv +4 位作者 Long Zhao Qiang Zhou Pengfei Gao Yanqi Zhang Yimin Li 《Energy Engineering》 EI 2023年第7期1637-1654,共18页
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric... Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power. 展开更多
关键词 Energy storage optimization real-time electricity price state of charge energy management strategy interactive power
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部