期刊文献+
共找到65,498篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient and accurate worm grinding of spur face gears according to an advanced geometrical analysis and a closed-loop manufacturing process 被引量:8
1
作者 ZHOU Yuan-sheng TANG Zhong-wei +2 位作者 SHI Xian-lin TANG Jin-yuan LI Zheng-min-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期1-13,共13页
Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the m... Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments. 展开更多
关键词 face gears worm grinding worm dressing geometrical analysis closed-loop manufacturing
在线阅读 下载PDF
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
2
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:2
3
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 Laser additive manufacturing Synchrotron radiation Melt pool DEFECT
原文传递
When Embodied AI Meets Industry 5.0:Human-Centered Smart Manufacturing 被引量:3
4
作者 Jing Xu Qiyu Sun +1 位作者 Qing-Long Han Yang Tang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期485-501,共17页
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste... As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape. 展开更多
关键词 Embodied AI human-centered manufacturing Industry 5.0 internet of things large multi-mode language models
在线阅读 下载PDF
Additive Manufacturing of Silicon Carbide Microwave-Absorbing Metamaterials 被引量:1
5
作者 Hanqing Zhao Qingwei Liao +3 位作者 Yinghao Li Xiangcheng Chu Songmei Yuan Lei Qin 《Additive Manufacturing Frontiers》 2025年第1期3-17,共15页
SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,S... SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,SiC is limited by its low impedance-matching performance and single wave-absorbing mechanism.Therefore,compatible metamaterial technologies are required to enhance its wave-absorbing performance further.The electromagnetic wave(EMW)absorbing metamaterials can realize perfect absorption of EMWs in specific frequency bands and precise regulation of EMW phase,propagation mode,and absorption frequency bands through structural changes.However,the traditional molding methods for manufacturing complex geometric shapes require expensive molds,involve process complexity,and have poor molding accuracy and other limitations.Therefore,additive manufacturing(AM)technology,through material layered stacking to achieve the processing of materials,is a comprehensive multidisciplinary advanced manufacturing technology and has become the core technology for manufacturing metamaterials.This review introduces the principles and applications of different AM technologies for SiC and related materials,discusses the current status and development trends of various AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,summarizes the limitations and technological shortcomings of existing AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,and provides an outlook for the future development of related AM technologies. 展开更多
关键词 SIC Electromagnetic absorption METAMATERIALS Additive manufacturing
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
6
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Mixing Intensification for Advanced Materials Manufacturing 被引量:1
7
作者 Chao Yang Guang-Wen Chu +5 位作者 Xin Feng Yan-Bin Li Jie Chen Dan Wang Xiaoxia Duan Jian-Feng Chen 《Engineering》 2025年第1期135-144,共10页
The mixing process plays a pivotal role in the design,optimization,and scale-up of chemical reactors.For most chemical reactions,achieving uniform and rapid contact between reactants at the molecular level is crucial.... The mixing process plays a pivotal role in the design,optimization,and scale-up of chemical reactors.For most chemical reactions,achieving uniform and rapid contact between reactants at the molecular level is crucial.Mixing intensification encompasses innovative methods and tools that address the limitations of inadequate mixing within reactors,enabling efficient reaction scaling and boosting the productivity of industrial processes.This review provides a concise introduction to the fundamentals of multiphase mixing,followed by case studies highlighting the application of mixing intensification in the production of energy-storage materials,advanced optical materials,and nanopesticides.These examples illustrate the significance of theoretical analysis in informing and advancing engineering practices within the chemical industry.We also explore the challenges and opportunities in this field,offering insights based on our current understanding. 展开更多
关键词 Mixing intensification Chemical reaction Advanced materials High-end manufacturing
在线阅读 下载PDF
Optimal Production Capacity Matching for Blockchain-Enabled Manufacturing Collaboration With the Iterative Double Auction Method 被引量:1
8
作者 Ying Chen Feilong Lin +2 位作者 Zhongyu Chen Changbing Tang Cailian Chen 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期550-562,共13页
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block... The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises. 展开更多
关键词 Blockchain iterative double auction manufacturing collaboration production capacity matching
在线阅读 下载PDF
Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques
9
作者 Tajmal Hussain Jongwon Seok 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期231-250,共20页
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re... Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology. 展开更多
关键词 Smart manufacturing CNN steel defects ensemble models
在线阅读 下载PDF
Review on Characteristic and Mechanical Behaviour of FGMs Prepared by Additive Manufacturing
10
作者 Sainath Krishna Mani Iyer Prabagaran Subramaniam 《稀有金属材料与工程》 北大核心 2025年第6期1478-1488,共11页
The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manuf... The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manufacturing process employed to manufacture complex 3D objects without tools,molds,assembly,and joining.Currently,commercial AM techniques mostly use homogeneous composition with simplified geometric descriptions,employing a single material across the entire component to achieve functional graded additive manufacturing(FGAM),in contrast to multi-material FGAM with heterogeneous structures.FGMs are widely used in various fields due to their mechanical property advantages.Because FGM plays a significant role in the industrial production,the characteristics and mechanical behaviour of FGMs prepared by AM were reviewed.In this review,the research on FGMs and AM over the past 30 years was reviewed,suggesting that future researchers should focus on the application of artificial intelligence and machine learning technologies in industry to optimize the process parameters of different gradient systems. 展开更多
关键词 additive manufacturing functionally graded material manufacturing process mechanical behaviour CHARACTERISTIC
原文传递
Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling 被引量:1
11
作者 Yangyang Sun Haibin Liu +2 位作者 Ruishan Xie Ying Chen Shujun Chen 《Journal of Materials Science & Technology》 2025年第2期168-181,共14页
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency... Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect. 展开更多
关键词 Friction rolling additive manufacturing Al-Li alloy Plasma preheating Instant cooling Heat accumulation Microstructure
原文传递
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
12
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
在线阅读 下载PDF
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
13
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 Additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Manufacturing of lithium battery toward deep-sea environment 被引量:1
14
作者 Yaohua Zhao Nan Li +4 位作者 Keyu Xie Chuan Wang Sisi Zhou Xianggong Zhang Cong Ye 《International Journal of Extreme Manufacturing》 2025年第2期310-335,共26页
The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose s... The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration. 展开更多
关键词 manufacturing of deep-sea battery Li battery materials selection component modification and test specialized battery management system
在线阅读 下载PDF
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
15
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
16
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
Effect of Gravitational Acceleration on Space Metal Laser Direct-Writing Additive Manufacturing Process
17
作者 Lei Wang Haitao Liu +2 位作者 Linxin Wang Weigang Zhao Bingheng Lu 《Additive Manufacturing Frontiers》 2025年第3期123-133,共11页
This study investigates a metal laser direct-writing additive manufacturing process for potential in-space applications.The feasibility of stable deposition under various gravitational conditions—specifically at angl... This study investigates a metal laser direct-writing additive manufacturing process for potential in-space applications.The feasibility of stable deposition under various gravitational conditions—specifically at angles of 0°,90°,and 180°between the deposition direction and gravitational acceleration,and under zero-gravity—is demonstrated.The analysis reveals that a stable metal deposition layer can be formed under different gravity conditions by establishing a strong liquid bridge connection with the substrate;however,the direction of gravitational acceleration significantly affects the cross-sectional morphology of the deposition layer.By comparing different parameters,it is found that the best cross-sectional morphology can be obtained when the wire feeding speed is 120 mm/min and the ratio to the moving speed is 1.0.Notably,a higher wire feeding rate correlates with an increased temperature gradient within the heat-affected zone.On this basis,a thin-walled cylindrical piece printed at a 90°angle between the deposition gravity directions exhibits an outer surface cylindricity of 0.294mm,a size deviation range of-0.168 mm to 0.126 mm,a maximum size deviation of 0.168 mm on the outer surface,and a surface roughness of less than 8.142μm.The results indicate that this process produces printed parts with high surface quality and geometric accuracy.Tensile tests on the printed parts demonstrate that they possess excellent mechanical properties.This study provides valuable insights and a meaningful exploration of future in-orbit metal manufacturing. 展开更多
关键词 Space manufacturing Metal direct writing manufacturing Zero gravity manufacturing Additive manufacturing
在线阅读 下载PDF
A novel wire arc additive and subtractive hybrid manufacturing process optimization method
18
作者 GUO Yiming ZHANG Wanyuan +2 位作者 XIAO Mingkun SONG Shida ZHANG Xiaoyong 《Journal of Southeast University(English Edition)》 2025年第1期109-117,共9页
A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are ... A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are modeled by level set functions.Secondly,the mathematical model of the additive direction optimization problem is established,and an improved particle swarm optimization algorithm is designed to decide the best additive direction.Then,the two-step strategy is used to plan the hybrid manufacturing alternating sequence.The target parts are directly divided into various processing regions;each processing region is optimized based on manufacturability and manufacturing efficiency,and the optimal hybrid manufacturing alternating sequence is obtained by merging some processing regions.Finally,the method is used to outline the process plan of the designed example model and applied to the actual hybrid manufacturing process of the model.The manufacturing result shows that the method can meet the main considerations in hybrid manufacturing.In addition,the degree of automation of process planning is high,and the dependence on manual intervention is low. 展开更多
关键词 wire arc additive manufacturing hybrid manufacturing process optimization manufacturABILITY
在线阅读 下载PDF
Research on the standardization promoting the development of intelligent manufacturing
19
作者 Zhao Weiwei 《China Standardization》 2025年第1期58-61,共4页
Intelligent manufacturing is a crucial path for promoting the transformation and upgrading of the manufacturing industr y. St andardization, connecting innovation, production, market s and ser v ices, plays an indispe... Intelligent manufacturing is a crucial path for promoting the transformation and upgrading of the manufacturing industr y. St andardization, connecting innovation, production, market s and ser v ices, plays an indispensable role in the development of intelligent manufacturing. This paper aims to explore the mechanism by which standardization aids in the high-quality development of the manufacturing industry in three aspects: standards are useful tools to identify the intelligent shortcomings of manufacturing enterprises;standards provide intelligent solutions for manufacturing enterprises;standards system guides the development of manufacturing industry. It is expected to provide insights for enterprises to facilitate their intelligent construction via standards, thereby boosting the intelligent development of the industry. 展开更多
关键词 STANDARDIZATION manufacturing industry intelligent manufacturing
原文传递
Application Analysis of Growth Strategies for Industrial Automation Enterprises in the Automotive Manufacturing Sector
20
作者 Honggang Liu 《Proceedings of Business and Economic Studies》 2025年第4期146-153,共8页
As the demand for intelligent and flexible production in the automotive manufacturing industry continues to intensify,industrial automation enterprises are gaining ever-greater market opportunities and competitive adv... As the demand for intelligent and flexible production in the automotive manufacturing industry continues to intensify,industrial automation enterprises are gaining ever-greater market opportunities and competitive advantages in this field.Based on a literature review and representative case studies,this paper constructs a theoretical framework for growth strategies and systematically analyzes the current application status and growth paths of automation enterprises in both complete vehicle and component production.The research finds that different growth strategies(such as vertical integration,horizontal diversification,and digital service transformation)exhibit varying applicability across upstream and downstream segments of automotive manufacturing,while simultaneously facing challenges related to technology integration,business models,and organizational change.In response to these issues,this paper proposes countermeasures such as optimizing R&D and customer relationship management,improving branding and after-sales service systems,and strengthening policy and industry environment support,thereby offering guidance for sustainable growth of industrial automation enterprises in the automotive manufacturing sector. 展开更多
关键词 Industrial automation Growth strategy Automotive manufacturing Smart manufacturing Case analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部