Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown co...Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.展开更多
In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedback...In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedbacks is proposed based on the goal-oriented(GO)methodology.Firstly,the basic theories and advantages of GO method are introduced.Secondly,a type-24B multiple closed-loop feedback structure operator is proposed through GO method with its operation formula given,which expands the types of GO method operators and the application scope of their reliability analysis.Finally,taking a certain type of diesel engine fuel supply system an example,the quantitative and qualitative analysis is carried out through GO method,Monte Carlo simulation as well as FTA respectively.The availability results verify the availability of the proposed type-24B operator in the reliability analysis of multiple closed-loop feedback systems.The qualitative analysis results indicate the accuracy and usability of the GO method as a qualitative analysis method.展开更多
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with ...This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.展开更多
The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses ...The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
Written feedback in English writing classes serves as the primary mode of feedback.By comparing direct corrective feedback and indirect corrective feedback in addressing content and form,this paper argues that indirec...Written feedback in English writing classes serves as the primary mode of feedback.By comparing direct corrective feedback and indirect corrective feedback in addressing content and form,this paper argues that indirect corrective feedback better aligns with the needs of English majors.Multiple factors influence the choice of written feedback methods,and teachers should carefully select the most appropriate approach based on student characteristics to maximize the effectiveness of feedback.展开更多
Although substantial research shows the effectiveness of written corrective feedback(WCF)in treating simple grammar structures,more research is still needed to refute Truscott’s claim that WCF may not work on complex...Although substantial research shows the effectiveness of written corrective feedback(WCF)in treating simple grammar structures,more research is still needed to refute Truscott’s claim that WCF may not work on complex grammar structures.Similarly,a previous body of research has shown that the degree of explicitness of feedback moderates the efficacy of WCF.However,most WCF studies have systematically manipulated only direct corrective feedback.The current study was therefore conducted to fill these gaps in the literature.To this end,five intact classes of Functional English were recruited and later randomly assigned to four treatment groups:DCF,DCF+ME,ICF,and ICF+ME,and one control group that received no feedback.All the groups took part in three WCF treatment sessions,during which they wrote two different pieces:a news report and a picture description.Later,only the treatment groups received the WCF.The WCF’s effectiveness was measured by writing tests and grammaticality judgment tasks(GJT).The results demonstrated that WCF helped L2 learners improve their grammatical accuracy of passive voice tenses.The study further showed that the group that received the most explicit type of WCF fared better than the ones that received the least explicit type of WCF.Important pedagogical implications for ESL/EFL teachers are discussed.展开更多
Prosthetic devices designed to assist individuals with damaged or missing body parts have made significant strides,particularly with advancements in machine intelligence and bioengineering.Initially focused on movemen...Prosthetic devices designed to assist individuals with damaged or missing body parts have made significant strides,particularly with advancements in machine intelligence and bioengineering.Initially focused on movement assistance,the field has shifted towards developing prosthetics that function as seamless extensions of the human body.During this progress,a key challenge remains the reduction of interface artifacts between prosthetic components and biological tissues.Soft electronics offer a promising solution due to their structural flexibility and enhanced tissue adaptability.However,achieving full integration of prosthetics with the human body requires both artificial perception and efficient transmission of physical signals.In this context,synaptic devices have garnered attention as next-generation neuromorphic computing elements because of their low power consumption,ability to enable hardware-based learning,and high compatibility with sensing units.These devices have the potential to create artificial pathways for sensory recognition and motor responses,forming a“sensory-neuromorphic system”that emulates synaptic junctions in biological neurons,thereby connecting with impaired biological tissues.Here,we discuss recent developments in prosthetic components and neuromorphic applications with a focus on sensory perception and sensorimotor actuation.Initially,we explore a prosthetic system with advanced sensory units,mechanical softness,and artificial intelligence,followed by the hardware implementation of memory devices that combine calculation and learning functions.We then highlight the importance and mechanisms of soft-form synaptic devices that are compatible with sensing units.Furthermore,we review an artificial sensory-neuromorphic perception system that replicates various biological senses and facilitates sensorimotor loops from sensory receptors,the spinal cord,and motor neurons.Finally,we propose insights into the future of closed-loop neuroprosthetics through the technical integration of soft electronics,including bio-integrated sensors and synaptic devices,into prosthetic systems.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the d...In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.展开更多
Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soi...Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soil structure,and nutrient availability.The sterilization-induced deviation(sterilization-effect,SS_(c))to often-used method B-PSF_(ou) was corrected by adding a parallel experiment without conditioning by any plants(B-PSF_(c)).Plant-soil feedback experiments were conducted for two plants with contrasting in root traits and rhizosphere microbial community to test the reliability of the method(Kalidium foliatum and Reaumuria songaric).The specific root length(SRL),root tissue density(RTD)and of R.songarica was higher compared to that of K.foliatum,but the root diameter(RAD)of it was significantly lower than that of K.foliatum.The plasticity of root traits of K.foliatum was stronger than that of R.songarica.The B-PSF_(ou) of K.foliatum was four times negative than B-PSF_(c),whereas there was no statistically significant difference of B-PSF_(ou) and B-PSF_(c) for R.songarica.The correlation between B-PSF_(c) and the relative abundance of pathogens and EcMF was found to be stronger compared to B-PSF_(ou).We proposed method corrects the deviation in B-PSF.The variation of deviation between species may be related to root traits.展开更多
We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially...We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.展开更多
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,an...Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.展开更多
Channel state information(CSI)is essen-tial to unlock the potential of reconfigurable intelli-gent surfaces(RISs)in wireless communication sys-tems.Since massive RIS elements are typically imple-mented without baseban...Channel state information(CSI)is essen-tial to unlock the potential of reconfigurable intelli-gent surfaces(RISs)in wireless communication sys-tems.Since massive RIS elements are typically imple-mented without baseband signal processing capabili-ties,limited CSI feedback is necessary when design-ing the reflection/refraction coefficients of the RIS.In this article,the unique RIS-assisted channel features,such as the RIS position-dependent channel fluctua-tion,the ultra-high dimensional sub-channel matrix,and the structured sparsity,are distilled from recent advances in limited feedback and used as guidelines for designing feedback schemes.We begin by il-lustrating the use cases and the corresponding chal-lenges associated with RIS feedback.We then discuss how to leverage techniques such as channel customiza-tion,structured-sparsity,autoencoders,and others to reduce feedback overhead and complexity when de-vising feedback schemes.Finally,we identify poten-tial research directions by considering the unresolved challenges,the new RIS architecture,and the integra-tion with multi-modal information and artificial intel-ligence.展开更多
This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for d...This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.展开更多
This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feed...Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding.展开更多
基金Technical Basis Projects of China's MIIT(Nos.ZQ092012B003,2012090003)
文摘Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.
基金supported by the Special Support Project of SASTIND and Technologyof SASTIND(No.JSZL2019XXXB001)。
文摘In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedbacks is proposed based on the goal-oriented(GO)methodology.Firstly,the basic theories and advantages of GO method are introduced.Secondly,a type-24B multiple closed-loop feedback structure operator is proposed through GO method with its operation formula given,which expands the types of GO method operators and the application scope of their reliability analysis.Finally,taking a certain type of diesel engine fuel supply system an example,the quantitative and qualitative analysis is carried out through GO method,Monte Carlo simulation as well as FTA respectively.The availability results verify the availability of the proposed type-24B operator in the reliability analysis of multiple closed-loop feedback systems.The qualitative analysis results indicate the accuracy and usability of the GO method as a qualitative analysis method.
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金023 Zhejiang Provincial Department of Education General Project:Research on an interdisciplinary teaching model to promote the development of computational thinking in the context of the new curriculum standards[Grant NO:Y202351596]Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[Grant NO:2025SB103].
文摘This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the Special Funds Project for the Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2023039)+1 种基金the National Natural Science Foundation of China(No.52075262)the Fundamental Research Funds for the Central Universities,China(No.30922010706).
文摘The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
文摘Written feedback in English writing classes serves as the primary mode of feedback.By comparing direct corrective feedback and indirect corrective feedback in addressing content and form,this paper argues that indirect corrective feedback better aligns with the needs of English majors.Multiple factors influence the choice of written feedback methods,and teachers should carefully select the most appropriate approach based on student characteristics to maximize the effectiveness of feedback.
文摘Although substantial research shows the effectiveness of written corrective feedback(WCF)in treating simple grammar structures,more research is still needed to refute Truscott’s claim that WCF may not work on complex grammar structures.Similarly,a previous body of research has shown that the degree of explicitness of feedback moderates the efficacy of WCF.However,most WCF studies have systematically manipulated only direct corrective feedback.The current study was therefore conducted to fill these gaps in the literature.To this end,five intact classes of Functional English were recruited and later randomly assigned to four treatment groups:DCF,DCF+ME,ICF,and ICF+ME,and one control group that received no feedback.All the groups took part in three WCF treatment sessions,during which they wrote two different pieces:a news report and a picture description.Later,only the treatment groups received the WCF.The WCF’s effectiveness was measured by writing tests and grammaticality judgment tasks(GJT).The results demonstrated that WCF helped L2 learners improve their grammatical accuracy of passive voice tenses.The study further showed that the group that received the most explicit type of WCF fared better than the ones that received the least explicit type of WCF.Important pedagogical implications for ESL/EFL teachers are discussed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1005567)supported by the NAVER Digital Bio Innovation Research Fund,funded by NAVER Corporation(Grant No.[37-2023-0040])+3 种基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-00261,Development of low power/low delay/self-power suppliable RF simultaneous information and power transfer system and stretchable electronic epineurium for wireless nerve bypass implementation)supported by Institute for Basic Science(IBS-R015-D1,IBSR015-D2)supported by a grant of the Korea-US Collaborative Research Fund(KUCRF)funded by the Ministry of Science and ICT and Ministry of Health&Welfare,Republic of Korea(Grant Number.RS-2024-00467213)。
文摘Prosthetic devices designed to assist individuals with damaged or missing body parts have made significant strides,particularly with advancements in machine intelligence and bioengineering.Initially focused on movement assistance,the field has shifted towards developing prosthetics that function as seamless extensions of the human body.During this progress,a key challenge remains the reduction of interface artifacts between prosthetic components and biological tissues.Soft electronics offer a promising solution due to their structural flexibility and enhanced tissue adaptability.However,achieving full integration of prosthetics with the human body requires both artificial perception and efficient transmission of physical signals.In this context,synaptic devices have garnered attention as next-generation neuromorphic computing elements because of their low power consumption,ability to enable hardware-based learning,and high compatibility with sensing units.These devices have the potential to create artificial pathways for sensory recognition and motor responses,forming a“sensory-neuromorphic system”that emulates synaptic junctions in biological neurons,thereby connecting with impaired biological tissues.Here,we discuss recent developments in prosthetic components and neuromorphic applications with a focus on sensory perception and sensorimotor actuation.Initially,we explore a prosthetic system with advanced sensory units,mechanical softness,and artificial intelligence,followed by the hardware implementation of memory devices that combine calculation and learning functions.We then highlight the importance and mechanisms of soft-form synaptic devices that are compatible with sensing units.Furthermore,we review an artificial sensory-neuromorphic perception system that replicates various biological senses and facilitates sensorimotor loops from sensory receptors,the spinal cord,and motor neurons.Finally,we propose insights into the future of closed-loop neuroprosthetics through the technical integration of soft electronics,including bio-integrated sensors and synaptic devices,into prosthetic systems.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
文摘In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.
基金supported by Gansu Province Science and Technology Project(Grant No.21JR7RA070)the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA051)the Central Government Guides Local Funds Project for Science and Technology Development(Grant No.23ZYQHO_(2)98).
文摘Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soil structure,and nutrient availability.The sterilization-induced deviation(sterilization-effect,SS_(c))to often-used method B-PSF_(ou) was corrected by adding a parallel experiment without conditioning by any plants(B-PSF_(c)).Plant-soil feedback experiments were conducted for two plants with contrasting in root traits and rhizosphere microbial community to test the reliability of the method(Kalidium foliatum and Reaumuria songaric).The specific root length(SRL),root tissue density(RTD)and of R.songarica was higher compared to that of K.foliatum,but the root diameter(RAD)of it was significantly lower than that of K.foliatum.The plasticity of root traits of K.foliatum was stronger than that of R.songarica.The B-PSF_(ou) of K.foliatum was four times negative than B-PSF_(c),whereas there was no statistically significant difference of B-PSF_(ou) and B-PSF_(c) for R.songarica.The correlation between B-PSF_(c) and the relative abundance of pathogens and EcMF was found to be stronger compared to B-PSF_(ou).We proposed method corrects the deviation in B-PSF.The variation of deviation between species may be related to root traits.
基金supported by the National Natural Science Foundation of China(Grant Nos.62061028 and 62461035)the Key Project of Natural Science Foundation of Jiangxi Province(Grant No.20232ACB202003)+2 种基金the Finance Science and Technology Special“contract system”Project of Nanchang University Jiangxi Province(Grant No.ZBG20230418015)the Natural Science Foundation of Chongqing(Grant No.CSTB2024NSCQ-MSX0412)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.ammt2021A-4).
文摘We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2024-RS-2024-00423071)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Force feedback bilateral teleoperation represents a pivotal advancement in control technology,finding widespread application in hazardous material transportation,perilous environments,space and deep-sea exploration,and healthcare domains.This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity.It elucidates the fundamental principles underpinning interaction forces and tactile exchanges,with a specific emphasis on the crucial role of tactile devices.In this review,a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted,utilizing published journal article data as the primary source of information.The review accentuates classical control frameworks and algorithms,while also delving into existing research advancements and prospec-tive breakthrough directions.Moreover,it explores specific practical scenarios ranging from intricate surgeries to hazardous environment exploration,underscoring the technology’s potential to revolutionize industries by augmenting human manipulation of remote systems.This underscores the pivotal role of force feedback bilateral teleoperation as a transformative human-machine interface,capable of shaping flexible control strategies and addressing technological bottlenecks.Future research endeavors in force feedback bilateral teleoperation are expected to prioritize the creation of more immersive experiences,overcoming technical hurdles,fortifying human-machine collaboration,and broadening application domains,particularly within the realms of medical intervention and hazardous environments.With the continuous progression of technology,the integration of human intelligence and robotic capabilities is expected to produce more innovations and breakthroughs in the field of automatic control.
基金supported in part by the Key Technologies Research and Development Program of Jiangsu(Prospective and Key Technologies for Industry)under Grant BE2023022 and BE2023022-1in part by National Natural Science Foundation of China(NSFC)under Grant 62401137,62401640,and 62231009+3 种基金in part by the Natural Science Foundation of Jiangsu Province under Grant BK20241281in part by the China National Postdoctoral Program for Innovative Talents under Grant BX20230065 and 2024M750421in part by the Jiangsu Excellent Postdoctoral Program under Grant 2023ZB476in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110732.
文摘Channel state information(CSI)is essen-tial to unlock the potential of reconfigurable intelli-gent surfaces(RISs)in wireless communication sys-tems.Since massive RIS elements are typically imple-mented without baseband signal processing capabili-ties,limited CSI feedback is necessary when design-ing the reflection/refraction coefficients of the RIS.In this article,the unique RIS-assisted channel features,such as the RIS position-dependent channel fluctua-tion,the ultra-high dimensional sub-channel matrix,and the structured sparsity,are distilled from recent advances in limited feedback and used as guidelines for designing feedback schemes.We begin by il-lustrating the use cases and the corresponding chal-lenges associated with RIS feedback.We then discuss how to leverage techniques such as channel customiza-tion,structured-sparsity,autoencoders,and others to reduce feedback overhead and complexity when de-vising feedback schemes.Finally,we identify poten-tial research directions by considering the unresolved challenges,the new RIS architecture,and the integra-tion with multi-modal information and artificial intel-ligence.
基金supported in part by the National Natural Science Foundation of China(Grant No.12432001)Natural Science Foundation of Hunan Province(Grant Nos.2023JJ60527,2023JJ30152,and 2023JJ30259)the Natural Science Foundation of Changsha(KQ2202133).
文摘This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
文摘Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding.