期刊文献+
共找到819,900篇文章
< 1 2 250 >
每页显示 20 50 100
Closed-loop control system design and experimental study for controlled pulse keyhole plasma arc welding 被引量:1
1
作者 贾传宝 武传松 +3 位作者 杜永鹏 郭宁 韩焱飞 王芳 《China Welding》 EI CAS 2011年第3期42-46,共5页
The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop... The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop a closed-loop control system for this special welding process, the key point is the determination of system input and output variables. The averaged efflux plasma voltage during a pulse cycle is defined as the characteristic variable reflecting the real keyhole dimension. Research and experiments are conducted to explore the relationship between the characteristic variable and weld pe^Cormance. Results show that alternated peak current can significantly change the keyhole dimension and the penetration. It is proposed that the keyhole average dimension is taken as the controlled variable, and the peak pulse current value and slopes are taken as control variables. 展开更多
关键词 controlled pulse plasma arc welding control system process control
在线阅读 下载PDF
Research of the algorithm of the closed-loop control system to control the piezoelectric actuator
2
作者 王广林 刘胜伟 +1 位作者 邵东向 李云峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期31-33,共3页
The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy.... The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used. 展开更多
关键词 piezoelectric actuator position control closed-loop control fuzzy control
在线阅读 下载PDF
Time-delay effect and design of closed-loop control system of circulation control airfoil
3
作者 Lingxiao Li Heyong XU +1 位作者 Zheng XING Abdul Samad KHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期50-67,共18页
In this paper,unsteady numerical simulation of jet Circulation Control(CC)is carried out with the NACA0012-CC airfoil as the research object.The dynamic process from the opening of jet slot and adjustment of jet inten... In this paper,unsteady numerical simulation of jet Circulation Control(CC)is carried out with the NACA0012-CC airfoil as the research object.The dynamic process from the opening of jet slot and adjustment of jet intensity to the stable state of jet control effect is explored.The time-delay effect and flow mechanism of jet are analyzed.The mechanism of jet momentum coefficient and moment coefficient fluctuating with time is revealed.The fluctuation of jet momentum coefficient is caused by the change of the pressure coefficient distribution on the Coanda surface or the structure of the wave system inside the jet,and the oscillation frequency of the wave system structure of the under-expansion supersonic jet reaches 1481 Hz at the opening moment.Based on the aerodynamic model and Proportional-Integral-Derivative(PID)control theory,the closed-loop control system of CC airfoil is designed.The parameters of PID control system are adjusted by the Genetic Algorithm(GA),which significantly improves the response ability of the control system to step,ramp and sine signals,and improves the dynamic performance of the system.Aimed at the special time-delay effect of jet control,Long Short-Term Memory(LSTM)neural network module is added to the control system to predict the target input signal,which strengthens the prediction ability of GA-PID control system to the target signal at the next time moment.By using LSTM neural network correction,the control hysteresis caused by jet time-delay effect is alleviated,and the response ability of the control system is effectively improved.Finally,the designed LSTM-GA-PID control system is applied to the NACA0012-CC airfoil for the pitch control simulation test.The test results show that the control system designed in this paper has good dynamic performance and can respond quickly and accurately to complex input signals,which confirms the effectiveness of the control system. 展开更多
关键词 Circulation control Unsteady numerical simulation Time-delay effect control system Long short-term memory
原文传递
Design and Implementation of Closed-Loop Control of Vector Force in Static Push-the-bit Rotary Steering System
4
作者 Liang Yao Kang Hong-bo +4 位作者 Liu Yue Chen wen Sun Yan Ma Li Zhao Yan-Wei 《Applied Geophysics》 2025年第3期796-803,896,共9页
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p... Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system. 展开更多
关键词 Static push-the-bit hydraulic modules closed-loop control vector force working mode
在线阅读 下载PDF
Fishing Ship Trajectory Tracking Control Based on the Closed-Loop Gain Shaping Algorithm Under Rough Sea
5
作者 SONG Chun-yu GUO Te-er SUI Jiang-hua 《China Ocean Engineering》 2025年第2期365-372,共8页
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working... This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships. 展开更多
关键词 trajectory tracking control nonlinear feedback control fishing ship closed-loop gain shaping algorithm rough sea
在线阅读 下载PDF
Optimized PID neural network closed-loop control for basal ganglia network in Parkinson's disease
6
作者 Hengxi Zhang Honghui Zhang +1 位作者 Shuang Liu Lin Du 《Chinese Physics B》 2025年第12期193-206,共14页
Conventional open-loop deep brain stimulation(DBS)systems with fixed parameters fail to accommodate interindividual pathological differences in Parkinson's disease(PD)management while potentially inducing adverse ... Conventional open-loop deep brain stimulation(DBS)systems with fixed parameters fail to accommodate interindividual pathological differences in Parkinson's disease(PD)management while potentially inducing adverse effects and causing excessive energy consumption.In this paper,we present an adaptive closed-loop framework integrating a Yogi-optimized proportional–integral–derivative neural network(Yogi-PIDNN)controller.The Yogi-augmented gradient adaptation mechanism accelerates the convergence of general PIDNN controllers in high-dimensional nonlinear control systems while reducing control energy usage.In addition,a system identification method establishes input–output dynamics for pre-training stimulation waveforms,bypassing real-time parameter-tuning constraints and thereby enhancing closed-loop adaptability.Finally,a theoretical analysis based on Lyapunov stability criteria establishes a sufficient condition for closed-loop stability within the identified model.Computational validations demonstrate that our approach restores thalamic relay reliability while reducing energy consumption by(81.0±0.7)%across multi-frequency tests.This study advances adaptive neuromodulation by synergizing data-driven pre-training with stability-guaranteed real-time control,offering a novel framework for energy-efficient and personalized Parkinson's therapy. 展开更多
关键词 Parkinson's disease closed-loop deep brain stimulation PID neural network adaptive control
原文传递
Machine Learning-Based Online Monitoring and Closed-Loop Controlling for 3D Printing of Continuous Fiber-Reinforced Composites 被引量:1
7
作者 Xinyun Chi Jiacheng Xue +6 位作者 Lei Jia Jiaqi Yao Huihui Miao Lingling Wu Tengfei Liu Xiaoyong Tian Dichen Li 《Additive Manufacturing Frontiers》 2025年第2期90-96,共7页
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa... Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments. 展开更多
关键词 Continuous fiber-reinforced composites 3D printing Computer vision Machine learning Defect detection Feedback control
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
8
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Strategic and Regional Investigation of the Exact Controllability of the Vibrating Plate Equation on a Regular Domain
9
作者 Mouhamadou NGOM Cheikh SECK 《Journal of Mathematical Research with Applications》 2026年第1期134-142,共9页
In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regiona... In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regional controllability is more adapted to systems described by dynamic systems.Regional controllability results in a strategic area were established for vibrating plates by the Hilbertian Uniqueness Method. 展开更多
关键词 exact controllability vibrating plates strategic regional control Hilbert uniqueness method
原文传递
Closed-Loop Control of^(3)He Nuclear Spin Oscillator:Implementation via Metastability Exchange Optical Pumping
10
作者 Liangyong Wu Changbo Fu Haiyang Yan 《Chinese Physics Letters》 2025年第12期63-68,共6页
Achieving long spin coherence times is crucial for quantum precision measurements,and closed-loop control techniques are often employed to accomplish this goal.Here,we demonstrate the impact of closed-loop feedback co... Achieving long spin coherence times is crucial for quantum precision measurements,and closed-loop control techniques are often employed to accomplish this goal.Here,we demonstrate the impact of closed-loop feedback control on nuclear spin precession in a metastability exchange optical pumping(MEOP)-based polarized^(3)He system.We analyze the effects of feedback theoretically and validate our predictions experimentally.With optimized feedback parameters,the spin coherence time T_(2)is extended by an order of magnitude.When the feedback strength surpasses a critical threshold,robust maser oscillations are spontaneously excited,demonstrating remarkable resistance to environmental noise and maintaining stable oscillation.This proof-of-principle experiment highlights the viability of MEOP-based^(3)He spin oscillators,especially in low-frequency domains.The operational simplicity and easy integration associated with MEOP-based systems make them particularly promising for fast,high-precision magnetic field measurements. 展开更多
关键词 analyze effects feedback quantum precision measurementsand spin coherence quantum precision measurements metastability exchange optical pumping meop based spin coherence time closed loop control nuclear spin precession
原文传递
Design and implementation of digital closed-loop drive control system of a MEMS gyroscope 被引量:5
11
作者 王晓雷 李宏生 杨波 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期35-40,共6页
In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for... In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible. 展开更多
关键词 micro electromechanical system (MEMS) digitalgyroscope drive frequency phase-locked loop (PLL) oscillating amplitude automatic gain control (AGC)
在线阅读 下载PDF
Closed-loop dynamic control allocation for aircraft with multiple actuators 被引量:5
12
作者 Gai Wendong Wang Honglun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期676-686,共11页
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increme... A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail. 展开更多
关键词 Canard rotor/wing aircraft closed-loop control allocation Dynamic inversion Flight control systems Redundant actuators
原文传递
Bioinspired Closed-loop CPG-based Control of a Robot Fish for Obstacle Avoidance and Direction Tracking 被引量:6
13
作者 Jiayong Chen Bo Yin +3 位作者 Chengcai Wang Fengran Xie Ruxu Du Yong Zhong 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第1期171-183,共13页
This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a... This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively. 展开更多
关键词 biomimetic robot fish closed-loop control Central Pattern Generator(CPG) obstacle avoidance direction tracking Copyright c Jilin University 2021.
在线阅读 下载PDF
Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters 被引量:21
14
作者 Ying-Hong Jia Quan Hu Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期112-124,共13页
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro... A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 Space robot Dynamics. Adaptive control closed-loop constraint Parameter uncertainty - Kane's equation
在线阅读 下载PDF
Application of Single Neuron Adaptive PID Regulators with Auto-tuning Gain in Industrial Parameter(Pressure)Closed-loop Process Control Systems 被引量:1
15
作者 Shaoyuan Sun Huade Li +1 位作者 Bin Qian Jianping Wei(Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第2期152-153,共2页
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind... A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered. 展开更多
关键词 single neuron GAIN adaptiVe PID regulator pressure closed-loop control
在线阅读 下载PDF
Closed-loop flow control of an ultra-compact serpentine inlet based on nondimensional model 被引量:1
16
作者 Xingya DA Jianchao FAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2555-2562,共8页
Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the a... Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the ability of being opened or adjusted as needed draw many attentions in recent years.In this paper,a feedback control system was developed based on the method of microjet blowing.The proposed system includes a pressure adjusting valve to adjust the control effort,a dynamic pressure sensor to sense the inlet distortion intensity,a signal processing instrument to calculate the Root-Mean-Squared(RMS)pressure,and a controller to implement feedback control.To achieve high quality closed-loop controls at dynamic conditions,a novel nondimensional feedback method was developed.The advantage of this nondimensional method was validated at both off-design and arbitrarily changing Mach number conditions.With a sectional PI control law,the RMS control error reduced more than 56%at arbitrary changing conditions.Works in this paper also showed that the dynamics of this nondimensional system can be simplified as a stable second-order overdamped system. 展开更多
关键词 closed-loop flow control Flow distortion Nondimensional feedback PI control Serpentine inlet
原文传递
Development of Cueing Algorithm Based on “Closed-Loop” Control for Flight Simulator Motion System 被引量:3
17
作者 ZHU Daoyang DUAN Shaoli FANG Da 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第5期376-382,共7页
The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-... The classical washout algorithm had fixed gains and manually constructed filters, so that it led to poor adaptability. Furthermore, it lost the sustained acceleration cues of high-and mid-frequency in cross-over(tilt-coordination) channel, and the acceleration of cross-over frequency was also limited by angular velocity limiter, so the false cues in flight simulation process were clearly perceived by pilots. The paper studied the characteristics of the classical washout algorithm and flight simulator motion platform, tried to redesign the source of cross-over acceleration channel and translation acceleration channel, and transferred the part of cross-over acceleration that was unsimulated sustained acceleration to translation acceleration channel. Comparisons were mainly made between classical washout algorithm and revised algorithm in a longitudinal/pitch direction. The evaluation was based on the implementation of human vestibular perception system. The results demonstrated that the revised algorithm could significantly reduce the phase lag, and improved the spikes tracking performance. Furthermore, sensory angular velocity and the error of sensory acceleration were strictly controlled within the threshold of human perception system, and the displacement was a little broader than the classical washout algorithm. Therefore, it was proved that the new algorithm could diminish the filters parameters and heighten the self-adaptability for the washout algorithm. In addition, the magnitude of false cues was remarkably reduced during flight simulator, and the workspace utilization of the motion platform was developed by "closed-loop" control system. 展开更多
关键词 classical WASHOUT ALGORITHM human VESTIBULAR system "closed-loop" control false CUES
原文传递
A closed-loop particle swarm optimizer for multivariable process controller design 被引量:2
18
作者 Kai HAN Jun ZHAO +1 位作者 Zu-hua XU Ji-xin QIAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1050-1060,共11页
Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop... Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances. 展开更多
关键词 Multivariable process control Proportional-integral-derivative (PID) control Model predictive control (MPC) Particle swarm optimization (PSO) closed-loop system
在线阅读 下载PDF
Solving position-posture deviation problem of multi-legged walking robots with semi-round rigid feet by closed-loop control 被引量:1
19
作者 陈刚 金波 陈鹰 《Journal of Central South University》 SCIE EI CAS 2014年第11期4133-4141,共9页
The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi... The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet. 展开更多
关键词 position-posture deviation semi-round rigid feet closed-loop control multi-legged walking robots
在线阅读 下载PDF
An Implanted Closed-loop Chip System for Heart Rate Control:System Design and Effects in Conscious Rats 被引量:3
20
作者 Yuxuan Zhou Yuan Yuan +4 位作者 Juan Gao Ling Yang Feng Zhang Guoqing Zhu Xingya Gao 《The Journal of Biomedical Research》 CAS 2010年第2期107-114,共8页
Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed... Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point. 展开更多
关键词 closed-loop regulation implanted chip system set point heart rate vagus nerve stimulation Remote-controlled animal
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部