Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ...Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully auto...Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p...Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.展开更多
Aiming at the problems of poor adaptability and insufficient fault prediction of traditional mechanical automation control systems in complex working conditions,a mechanical automation control system based on artifici...Aiming at the problems of poor adaptability and insufficient fault prediction of traditional mechanical automation control systems in complex working conditions,a mechanical automation control system based on artificial intelligence is designed.This design integrates expert control,fuzzy control,and neural network control technologies,and builds a hierarchical distributed architecture.Fault warning adopts threshold judgment and dynamic time warping pattern recognition technologies,and state monitoring realizes accurate analysis through multi-source data fusion and Kalman filtering algorithm.Practical applications show that this system can reduce the equipment failure rate by more than 30%.With the help of intelligent scheduling optimization,it can significantly improve production efficiency and reduce energy consumption,providing a reliable technical solution and practical path for the intelligent upgrade of the mechanical automation field.展开更多
This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of fun...This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of functional modules,signal processing modules,and data analysis modules,and covers aspects such as the application of machine learning algorithms and the establishment of fault waveform databases.Finally,it looks forward to the development of intelligent testing systems and emphasizes the importance of building a standardized testing system.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on trad...The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.展开更多
This article introduces a computer numerical control (CNC)-based open hardware architecture system to realize the special functions of automated tape-laying (ATL) in a numerical control system. It associates a pro...This article introduces a computer numerical control (CNC)-based open hardware architecture system to realize the special functions of automated tape-laying (ATL) in a numerical control system. It associates a programmable multi-axis controller (PMAC) as the motion control unit with programmable numerical controllers (PCL-725, PCL-730) for on-off control. To bring about synchronized movements of the main 5-axis tape-laying head system and the 3-axis ultrasonic tape-cutting sub-system, the tracking-control method associated with time-based mode attributed to PMAC is applied in different cases. In addition, with the goal of realizing real-time tasks in the software system such as synchronizing motion control and on-off control, the real-time Win 2000 system is adopted. As a device driver for PMAC and PCL, a user graphical interface and a numerical control program interpretation module are also designed. This system is helpful to solve complicated problems in designing numerical controls for ATL such as ensuring high requirements for precise machine control and synchronization of motion control and on-off control.展开更多
A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co...A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.展开更多
A shared control of highly automated Steer-by-Wire system is proposed for cooperative driving between the driver and vehicle in the face of driver's abnormal driving. A fault detection scheme is designed to detect...A shared control of highly automated Steer-by-Wire system is proposed for cooperative driving between the driver and vehicle in the face of driver's abnormal driving. A fault detection scheme is designed to detect the abnormal driving behaviour and transfer the control of the car to the automatic system designed based on a fault tolerant model predictive control(MPC) controller driving the vehicle along an optimal safe path.The proposed concept and control algorithm are tested in a number of scenarios representing intersection, lane change and different types of driver's abnormal behaviour. The simulation results show the feasibility and effectiveness of the proposed method.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
As science and technology continue to progress forward,electrical automation engineering is also developing,of which programmable logic controller(PLC)technology is widely being used.Through the integration of PLC tec...As science and technology continue to progress forward,electrical automation engineering is also developing,of which programmable logic controller(PLC)technology is widely being used.Through the integration of PLC technology and traditional electrical automation technology,good development of modern science and technology is promoted while traditional automation is preserved.The development of electrical engineering can greatly improve the strength of science,technology,and economy in our country.Based on PLC technology,this paper analyzes the design of electrical automation control.展开更多
In software-defined networks(SDNs),controller placement is a critical factor in the design and planning for the future Internet of Things(IoT),telecommunication,and satellite communication systems.Existing research ha...In software-defined networks(SDNs),controller placement is a critical factor in the design and planning for the future Internet of Things(IoT),telecommunication,and satellite communication systems.Existing research has concentrated largely on factors such as reliability,latency,controller capacity,propagation delay,and energy consumption.However,SDNs are vulnerable to distributed denial of service(DDoS)attacks that interfere with legitimate use of the network.The ever-increasing frequency of DDoS attacks has made it necessary to consider them in network design,especially in critical applications such as military,health care,and financial services networks requiring high availability.We propose a mathematical model for planning the deployment of SDN smart backup controllers(SBCs)to preserve service in the presence of DDoS attacks.Given a number of input parameters,our model has two distinct capabilities.First,it determines the optimal number of primary controllers to place at specific locations or nodes under normal operating conditions.Second,it recommends an optimal number of smart backup controllers for use with different levels of DDoS attacks.The goal of the model is to improve resistance to DDoS attacks while optimizing the overall cost based on the parameters.Our simulated results demonstrate that the model is useful in planning for SDN reliability in the presence of DDoS attacks while managing the overall cost.展开更多
In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dyna...In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dynamic analysis of vehicle starting process and requirements of crawl driv- ing for the vehicle, a control strategy of the clutch was designed. The strategy increased the.slipping friction torque first and then decreased it, in order to realize the crawl driving. The speed increased by the engagement of the clutch, and then the clutch turned to disengage to the half disengage point, when the speed met the requirements. Based on the control strategy, a control software was de- signed. In the end, the software was tested on a vehicle with AMT. The lowest steady vehicle speed was reduced to 40% of the original value, which was set in the control strategy.展开更多
Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish ...Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.展开更多
The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qua...The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qualitative spectrum analysis software and is developed in C#. The platform provides flexible interfacing and automated control; it is compatible with different manufacturer component models and is constructed in modularized form for easy ex- pandability. During peak identification, a more robust peak identification method with improved stability in peak identification has been achieved by applying additional smoothing on the slope obtained by calculation before peak identification. For the purpose of element identification, an improved main lines analysis method, which detects all elements on the spectral peak to avoid omission of certain elements without strong spectral lines, is applied to element identification in the tested LIBS samples. This method also increases the identification speed. In this paper, actual applications have been carried out. According to tests, the analytical test system is compatible with components of various models made by different manufacturers. It can automatically control components to get experimental data and conduct filtering, peak identification and qualitative analysis, etc. on spectral data.展开更多
Objective:The randomized controlled trial(ClinicalTrials.gov identifier NCT02990741)will investigate whether more frequent electrocardiographic(ECG)recordings and analyses with an automated ECG system would improve de...Objective:The randomized controlled trial(ClinicalTrials.gov identifier NCT02990741)will investigate whether more frequent electrocardiographic(ECG)recordings and analyses with an automated ECG system would improve detection of atrial fibrillation compared with a single annual ECG screen in elderly Chinese in community health centers.Design:Men and women(≥65 years)will be randomized into intensive(n=3500)and usual(n=3500)screening groups,and within the intensive screening group into intensive screening(n=2625)and more intensive screening(n=875)subgroups.ECG recordings will be performed with an automated ECG analysis system(AliveCor heart monitor)at 1 year in the usual screening group,at 3,6,9,and 12 months in the intensive screening subgroup,and at 1,2,3,and 4 weeks and 3,6,9,and 12 months in the more intensive screening subgroup.The primary outcome is the detection rate of atrial fibrillation between the usual screening group and the intensive screening group.Sample size estimation was based on a projected detection rate of atrial fibrillation of 2.0% by a single ECG recording at 12 months,an improvement of 50% with more frequent ECG recordings,α=0.05,power of 80%,and a one-sided test.Conclusions:The trial will provide evidence on the clinical effectiveness of more frequent ECG recordings by a handheld automated analysis system in the detection of atrial fibrillation.展开更多
基金supported by the National Natural Science Foundation of China(51875061)China Scholarship Council(202206050107)。
文摘Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(72071143)。
文摘Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金supported by the Opening Foundation of China National Logging Corporation(CNLC20229C06)the China Petroleum Technical Service Corporation's science project'Development and application of 475 rotary steering system'(2024T-001001)。
文摘Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system.
文摘Aiming at the problems of poor adaptability and insufficient fault prediction of traditional mechanical automation control systems in complex working conditions,a mechanical automation control system based on artificial intelligence is designed.This design integrates expert control,fuzzy control,and neural network control technologies,and builds a hierarchical distributed architecture.Fault warning adopts threshold judgment and dynamic time warping pattern recognition technologies,and state monitoring realizes accurate analysis through multi-source data fusion and Kalman filtering algorithm.Practical applications show that this system can reduce the equipment failure rate by more than 30%.With the help of intelligent scheduling optimization,it can significantly improve production efficiency and reduce energy consumption,providing a reliable technical solution and practical path for the intelligent upgrade of the mechanical automation field.
文摘This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of functional modules,signal processing modules,and data analysis modules,and covers aspects such as the application of machine learning algorithms and the establishment of fault waveform databases.Finally,it looks forward to the development of intelligent testing systems and emphasizes the importance of building a standardized testing system.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
文摘The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.
基金National High-Tech Research and Development Program Special Foundation of China(2002AA334130)
文摘This article introduces a computer numerical control (CNC)-based open hardware architecture system to realize the special functions of automated tape-laying (ATL) in a numerical control system. It associates a programmable multi-axis controller (PMAC) as the motion control unit with programmable numerical controllers (PCL-725, PCL-730) for on-off control. To bring about synchronized movements of the main 5-axis tape-laying head system and the 3-axis ultrasonic tape-cutting sub-system, the tracking-control method associated with time-based mode attributed to PMAC is applied in different cases. In addition, with the goal of realizing real-time tasks in the software system such as synchronizing motion control and on-off control, the real-time Win 2000 system is adopted. As a device driver for PMAC and PCL, a user graphical interface and a numerical control program interpretation module are also designed. This system is helpful to solve complicated problems in designing numerical controls for ATL such as ensuring high requirements for precise machine control and synchronization of motion control and on-off control.
基金Supported by Natural Science Foundation of China(Grant Nos.52072051,51705044)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956)+1 种基金State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202016)State Key Laboratory of Mechanical Transmissions(Grant No.SKLMT-KFKT-201806).
文摘A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.
文摘A shared control of highly automated Steer-by-Wire system is proposed for cooperative driving between the driver and vehicle in the face of driver's abnormal driving. A fault detection scheme is designed to detect the abnormal driving behaviour and transfer the control of the car to the automatic system designed based on a fault tolerant model predictive control(MPC) controller driving the vehicle along an optimal safe path.The proposed concept and control algorithm are tested in a number of scenarios representing intersection, lane change and different types of driver's abnormal behaviour. The simulation results show the feasibility and effectiveness of the proposed method.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金2021 Guangxi Electrical Polytechnic Institute Scientific Research Capability Enhancement Project:Research and development based on Siemens 1200 Visual Material Sorting device(Project No.2021KY03)。
文摘As science and technology continue to progress forward,electrical automation engineering is also developing,of which programmable logic controller(PLC)technology is widely being used.Through the integration of PLC technology and traditional electrical automation technology,good development of modern science and technology is promoted while traditional automation is preserved.The development of electrical engineering can greatly improve the strength of science,technology,and economy in our country.Based on PLC technology,this paper analyzes the design of electrical automation control.
基金This research work was funded by TMR&D Sdn Bhd under project code RDTC160902.
文摘In software-defined networks(SDNs),controller placement is a critical factor in the design and planning for the future Internet of Things(IoT),telecommunication,and satellite communication systems.Existing research has concentrated largely on factors such as reliability,latency,controller capacity,propagation delay,and energy consumption.However,SDNs are vulnerable to distributed denial of service(DDoS)attacks that interfere with legitimate use of the network.The ever-increasing frequency of DDoS attacks has made it necessary to consider them in network design,especially in critical applications such as military,health care,and financial services networks requiring high availability.We propose a mathematical model for planning the deployment of SDN smart backup controllers(SBCs)to preserve service in the presence of DDoS attacks.Given a number of input parameters,our model has two distinct capabilities.First,it determines the optimal number of primary controllers to place at specific locations or nodes under normal operating conditions.Second,it recommends an optimal number of smart backup controllers for use with different levels of DDoS attacks.The goal of the model is to improve resistance to DDoS attacks while optimizing the overall cost based on the parameters.Our simulated results demonstrate that the model is useful in planning for SDN reliability in the presence of DDoS attacks while managing the overall cost.
基金Supported by the National Natural Science Foundation of China ( 51205209)
文摘In order to move vehicles with automated mechanical transmission (AMT) a little bit of distance, such as reversing into or moving in a garage, a control strategy for crawling vehicles was proposed. Based on the dynamic analysis of vehicle starting process and requirements of crawl driv- ing for the vehicle, a control strategy of the clutch was designed. The strategy increased the.slipping friction torque first and then decreased it, in order to realize the crawl driving. The speed increased by the engagement of the clutch, and then the clutch turned to disengage to the half disengage point, when the speed met the requirements. Based on the control strategy, a control software was de- signed. In the end, the software was tested on a vehicle with AMT. The lowest steady vehicle speed was reduced to 40% of the original value, which was set in the control strategy.
基金supported by the National Key Research and Development Program(Grant No.2020YFB1313200,2022YFC2805200)the National Natural Science Foundation of China(Grant No.52001260,52201381)Ningbo Natural Science Foundation(Grant No.2022J062).
文摘Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.
基金supported by the National Major Scientific Instruments and Equipment Development Special Funds of China(No.2011YQ030113)
文摘The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qualitative spectrum analysis software and is developed in C#. The platform provides flexible interfacing and automated control; it is compatible with different manufacturer component models and is constructed in modularized form for easy ex- pandability. During peak identification, a more robust peak identification method with improved stability in peak identification has been achieved by applying additional smoothing on the slope obtained by calculation before peak identification. For the purpose of element identification, an improved main lines analysis method, which detects all elements on the spectral peak to avoid omission of certain elements without strong spectral lines, is applied to element identification in the tested LIBS samples. This method also increases the identification speed. In this paper, actual applications have been carried out. According to tests, the analytical test system is compatible with components of various models made by different manufacturers. It can automatically control components to get experimental data and conduct filtering, peak identification and qualitative analysis, etc. on spectral data.
文摘Objective:The randomized controlled trial(ClinicalTrials.gov identifier NCT02990741)will investigate whether more frequent electrocardiographic(ECG)recordings and analyses with an automated ECG system would improve detection of atrial fibrillation compared with a single annual ECG screen in elderly Chinese in community health centers.Design:Men and women(≥65 years)will be randomized into intensive(n=3500)and usual(n=3500)screening groups,and within the intensive screening group into intensive screening(n=2625)and more intensive screening(n=875)subgroups.ECG recordings will be performed with an automated ECG analysis system(AliveCor heart monitor)at 1 year in the usual screening group,at 3,6,9,and 12 months in the intensive screening subgroup,and at 1,2,3,and 4 weeks and 3,6,9,and 12 months in the more intensive screening subgroup.The primary outcome is the detection rate of atrial fibrillation between the usual screening group and the intensive screening group.Sample size estimation was based on a projected detection rate of atrial fibrillation of 2.0% by a single ECG recording at 12 months,an improvement of 50% with more frequent ECG recordings,α=0.05,power of 80%,and a one-sided test.Conclusions:The trial will provide evidence on the clinical effectiveness of more frequent ECG recordings by a handheld automated analysis system in the detection of atrial fibrillation.