Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of ...Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs.展开更多
In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve th...In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve the energy utilization efficiency,but this technique is not compatible with state-of-the-art devices such as cantilever-based PMUTs.A closed back cavity provides an alternative method for effectively utilizing the backside acoustic energy.This paper investigates the effects of a closed back cavity on PMUT performance through theoretical analysis,simulations,and experimental verification.Increasing the cavity depth produces a periodic modulation of several key PMUT metrics,such as the relative frequency deviation and quality factor.The optimal cavity depth for PMUTs that ensures a robust resonant frequency and high quality factor is defined as a function of the acoustic wavelength.A closed back cavity also provides an effective method for continuously tuning the quality factor,and thus the bandwidth,of PMUTs.This work paves the way for air-coupled PMUTs with adjustable performance for various applications.展开更多
Loess is susceptible to loading effects such as significant changes in strength and volume variation caused by loading and wetting.In this study,considering the different connection states of pore water and gas in loe...Loess is susceptible to loading effects such as significant changes in strength and volume variation caused by loading and wetting.In this study,considering the different connection states of pore water and gas in loess fabric,the gas phase closure case is incorporated into a unified form of the generalized effective stress framework,introducing a damage parameter considering the effects of closed pore gas.The loading effects of unsaturated loess under wide variations in saturation are described in a unified way,and the model performance is verified by corresponding stress and hydraulic path tests.The results indicated that the collapse response involves the initial void ratio of loess,and the coupled outwards motion of the loading-collapse(LC)yield surface under loading enhances its structural strength.Suction-enhanced yield stress requires a greater"tensile stress"to counteract its structural stability.The nucleation of bubbles at high saturation causes a decrease in yield stress.The loading effect exhibits a smaller collapse behavior when the influence of closed gas is considered,whereas the suction path does not cross the LC in the stress space under hydraulic action for the same parameters,which amplifies the influence of closed gas on loess deformation.展开更多
Objective Close reduction and internal fixation have gained popularity for the treatment of pelvic fractures.However,the closed reduction of bilateral displaced posterior pelvic ring disruption is a great challenge ev...Objective Close reduction and internal fixation have gained popularity for the treatment of pelvic fractures.However,the closed reduction of bilateral displaced posterior pelvic ring disruption is a great challenge even for the most experienced surgeon.In this study,we describe in detail a novel unlocking closed reduction technique(UCRT)frame that allows strong traction for bilateral posterior pelvic ring displacement and presents preliminary clinical outcomes.Methods We retrospectively reviewed 32 patients with bilateral displaced posterior pelvic ring disruptions(AO/OTA 61-C2 and C3)who were initially treated with this technique between July 2017 and July 2022.According to the AO/OTA clas-sification,there were 9 cases(28.12%)of 61-C2,and 23 cases(71.88%)of 61-C3.There were 11 males,21 females,with an average age of 38.1 years.The interval from injury to operation was 4-27 days,with a cut-off of 12.5 days(receiver operat-ing characteristic curve).Operative time,blood loss,and postoperative radiographic findings were recorded.The functional outcomes and complications were followed.Results A total of 30(93.8%)patients achieved successful closed reduction,whereas 2 required open reduction.The success-ful closed reduction rate was 95.5%(21/22)in patients whose injury-to-operation time was less than 12.5 days.The vertical displacement percent correction of the obviously displaced hemipelvis was 70.20%±16.79%on average.The average degree of pelvic deformity correction was 64.86%±17.71%.Thirty patients were followed up for at least 12 months(12-36 months),and no complications of nonunion or redisplacement were observed.The Matta-Tornetta scoring standard revealed that the excellent(25/30)and good(4/30)rate was 96.7%.The Majeed clinical efficacy score revealed that the overall excellent and good rate was 100%.One patient had INFIX-related infection,and 2 reported numbness in the lateral thigh.The numbness was improved after INFIX removal.Conclusions This study presents an updated technique for closed reduction using a UCRT frame for bilateral posterior pelvic ring disruption,which has been shown to be effective,as indicated by excellent surgical and functional outcomes.展开更多
In this article,we are concerned with the C^(2)estimates for the k-convex solutions of a class of degenerate k-Hessian equations on closed Hermitian manifolds,whose function in the right-hand side is relevant to the u...In this article,we are concerned with the C^(2)estimates for the k-convex solutions of a class of degenerate k-Hessian equations on closed Hermitian manifolds,whose function in the right-hand side is relevant to the unknown function and its gradient.We will get C^(0)estimate by promoting others′results,and get the“HMW estimate”of this equation such that the conditions of using blow-up analysis are satisfied,and the gradient estimate and second-order estimate will be obtained.Such an estimate will be helpful to study the existence for the solution of the equation.展开更多
The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,esp...The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.展开更多
Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of s...Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.展开更多
A binary complete decision table with many-valued decisions is a table with n attributes and 2^(n) pairwise distinct rows filled with numbers from the set{0,1}.Each row of this table is labeled with a nonempty finite ...A binary complete decision table with many-valued decisions is a table with n attributes and 2^(n) pairwise distinct rows filled with numbers from the set{0,1}.Each row of this table is labeled with a nonempty finite set of decisions.For a given row of the table,the task is to find a decision from the set of decisions attached to the row.Such tables are generalizations of Boolean functions.They can also be viewed as representations of various problems related to systems of decision rules.In this paper,we consider three types of classes of binary complete decision tables with many-valued decisions,closed with respect to removal of columns and changing of decisions.For tables from these classes,we study the relationships between the minimum weighted depth of deterministic,nondeterministic,and(for one type of classes)strongly nondeterministic decision trees and the total weight of attributes attached to columns.Note that nondeterministic decision trees and strongly nondeterministic decision trees for decision tables can be interpreted as a way of representing the two types of systems of decision rules for these tables.展开更多
In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for...In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.展开更多
Closed pores formed in hard carbons play an essential role in sodium storage at plateau region.However,the effect of different structural features on the diffusion of sodium ions into closed pores remains unclear.Here...Closed pores formed in hard carbons play an essential role in sodium storage at plateau region.However,the effect of different structural features on the diffusion of sodium ions into closed pores remains unclear.Herein,a precursor reconstruction strategy is conducted to regulate carbon microstructures including interlayer spacing,defect concentration,and closed pore volume by changing the ratio of aromatic and polysaccharide components.Aromatic structure parts tend to develop disordered carbons with fewer defects,larger interlayer spacing,and smaller closed pore volume,while polysaccharide components prefer to form disordered carbons with more defects,smaller interlayer spacing,and larger closed pore volume.Through the correlation analysis of microstructure features and the sodium storage capacity below 0.1 V.It finds that the intercalation capacity is proportional to the ratio of pseudo-graphitic domains,whereas the pore filling capacity appeared at lower potential gradually decreases with the increasing defect concentration due to homo-ionic repulsion effect,without linear correlation with shortrange microcrystalline and closed pore volume.The optimized sample with suitable interlayer spacing and defect concentration exhibits a high plateau capacity of 241.7 m Ah/g.This work provides insights into the exploitation of closed pore sodium storage performance.展开更多
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen...Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury.展开更多
A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency ...A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.展开更多
The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this prob...The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
文摘A survey of recent progress on the multiplicity and stability problems for closed characteristics on compact convex hypersurfaces in R^(2n) is given.
基金supported by the National Natural Science Foundation of China(22379165,U21A20284)Natural Science Foundation of Hunan Province(2023JJ40704).
文摘Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Grant No.62001322)in part by the National Key Research and Development Program(Grant No.2020YFB2008800).
文摘In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve the energy utilization efficiency,but this technique is not compatible with state-of-the-art devices such as cantilever-based PMUTs.A closed back cavity provides an alternative method for effectively utilizing the backside acoustic energy.This paper investigates the effects of a closed back cavity on PMUT performance through theoretical analysis,simulations,and experimental verification.Increasing the cavity depth produces a periodic modulation of several key PMUT metrics,such as the relative frequency deviation and quality factor.The optimal cavity depth for PMUTs that ensures a robust resonant frequency and high quality factor is defined as a function of the acoustic wavelength.A closed back cavity also provides an effective method for continuously tuning the quality factor,and thus the bandwidth,of PMUTs.This work paves the way for air-coupled PMUTs with adjustable performance for various applications.
基金funded by the National Natural Science Foundation of China (Grant Nos.42230712,42472357)the China Postdoctoral Science Foundation (Grant No.2023MD734211).
文摘Loess is susceptible to loading effects such as significant changes in strength and volume variation caused by loading and wetting.In this study,considering the different connection states of pore water and gas in loess fabric,the gas phase closure case is incorporated into a unified form of the generalized effective stress framework,introducing a damage parameter considering the effects of closed pore gas.The loading effects of unsaturated loess under wide variations in saturation are described in a unified way,and the model performance is verified by corresponding stress and hydraulic path tests.The results indicated that the collapse response involves the initial void ratio of loess,and the coupled outwards motion of the loading-collapse(LC)yield surface under loading enhances its structural strength.Suction-enhanced yield stress requires a greater"tensile stress"to counteract its structural stability.The nucleation of bubbles at high saturation causes a decrease in yield stress.The loading effect exhibits a smaller collapse behavior when the influence of closed gas is considered,whereas the suction path does not cross the LC in the stress space under hydraulic action for the same parameters,which amplifies the influence of closed gas on loess deformation.
基金supported by the National Key Research and Development Program of China(2022YFC2504303)Innovation Foundation of National Clinical Research Center for Orthopaedics,Sports Medicine&Rehabilitation(2021-NCRC-CXJJ-ZH-24)Medical Innovation and Transformation Incubation Project of Tongji Hospital(2022ZHFY10).
文摘Objective Close reduction and internal fixation have gained popularity for the treatment of pelvic fractures.However,the closed reduction of bilateral displaced posterior pelvic ring disruption is a great challenge even for the most experienced surgeon.In this study,we describe in detail a novel unlocking closed reduction technique(UCRT)frame that allows strong traction for bilateral posterior pelvic ring displacement and presents preliminary clinical outcomes.Methods We retrospectively reviewed 32 patients with bilateral displaced posterior pelvic ring disruptions(AO/OTA 61-C2 and C3)who were initially treated with this technique between July 2017 and July 2022.According to the AO/OTA clas-sification,there were 9 cases(28.12%)of 61-C2,and 23 cases(71.88%)of 61-C3.There were 11 males,21 females,with an average age of 38.1 years.The interval from injury to operation was 4-27 days,with a cut-off of 12.5 days(receiver operat-ing characteristic curve).Operative time,blood loss,and postoperative radiographic findings were recorded.The functional outcomes and complications were followed.Results A total of 30(93.8%)patients achieved successful closed reduction,whereas 2 required open reduction.The success-ful closed reduction rate was 95.5%(21/22)in patients whose injury-to-operation time was less than 12.5 days.The vertical displacement percent correction of the obviously displaced hemipelvis was 70.20%±16.79%on average.The average degree of pelvic deformity correction was 64.86%±17.71%.Thirty patients were followed up for at least 12 months(12-36 months),and no complications of nonunion or redisplacement were observed.The Matta-Tornetta scoring standard revealed that the excellent(25/30)and good(4/30)rate was 96.7%.The Majeed clinical efficacy score revealed that the overall excellent and good rate was 100%.One patient had INFIX-related infection,and 2 reported numbness in the lateral thigh.The numbness was improved after INFIX removal.Conclusions This study presents an updated technique for closed reduction using a UCRT frame for bilateral posterior pelvic ring disruption,which has been shown to be effective,as indicated by excellent surgical and functional outcomes.
文摘In this article,we are concerned with the C^(2)estimates for the k-convex solutions of a class of degenerate k-Hessian equations on closed Hermitian manifolds,whose function in the right-hand side is relevant to the unknown function and its gradient.We will get C^(0)estimate by promoting others′results,and get the“HMW estimate”of this equation such that the conditions of using blow-up analysis are satisfied,and the gradient estimate and second-order estimate will be obtained.Such an estimate will be helpful to study the existence for the solution of the equation.
文摘The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.
基金the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant(No.20172005)。
文摘Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.
基金supported by King Abdullah University of Science and Technology(KAUST).
文摘A binary complete decision table with many-valued decisions is a table with n attributes and 2^(n) pairwise distinct rows filled with numbers from the set{0,1}.Each row of this table is labeled with a nonempty finite set of decisions.For a given row of the table,the task is to find a decision from the set of decisions attached to the row.Such tables are generalizations of Boolean functions.They can also be viewed as representations of various problems related to systems of decision rules.In this paper,we consider three types of classes of binary complete decision tables with many-valued decisions,closed with respect to removal of columns and changing of decisions.For tables from these classes,we study the relationships between the minimum weighted depth of deterministic,nondeterministic,and(for one type of classes)strongly nondeterministic decision trees and the total weight of attributes attached to columns.Note that nondeterministic decision trees and strongly nondeterministic decision trees for decision tables can be interpreted as a way of representing the two types of systems of decision rules for these tables.
基金The National Natural Science Foundation of China(No. 60974116 )the Research Fund of Aeronautics Science (No.20090869007)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200902861063)
文摘In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.
基金supported by the National Key Research and Development(R&D)Program of China(No.2020YFB1505803)the Youth Innovation Promotion Association of CAS(No.2019178)the Innovation Fund for Basic Research Program supported by ICC CAS(Nos.SCJC-XCL-2023-10,SCJC-XCL-2023-13)。
文摘Closed pores formed in hard carbons play an essential role in sodium storage at plateau region.However,the effect of different structural features on the diffusion of sodium ions into closed pores remains unclear.Herein,a precursor reconstruction strategy is conducted to regulate carbon microstructures including interlayer spacing,defect concentration,and closed pore volume by changing the ratio of aromatic and polysaccharide components.Aromatic structure parts tend to develop disordered carbons with fewer defects,larger interlayer spacing,and smaller closed pore volume,while polysaccharide components prefer to form disordered carbons with more defects,smaller interlayer spacing,and larger closed pore volume.Through the correlation analysis of microstructure features and the sodium storage capacity below 0.1 V.It finds that the intercalation capacity is proportional to the ratio of pseudo-graphitic domains,whereas the pore filling capacity appeared at lower potential gradually decreases with the increasing defect concentration due to homo-ionic repulsion effect,without linear correlation with shortrange microcrystalline and closed pore volume.The optimized sample with suitable interlayer spacing and defect concentration exhibits a high plateau capacity of 241.7 m Ah/g.This work provides insights into the exploitation of closed pore sodium storage performance.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX)and 81671189(to RX)。
文摘Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury.
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No 05301018), the Research and Development Fund of Shenzhen University, China (Grant No 200549), and the National Natural Science Foundation of China (Grant Nos 10334010 and 10404009).
文摘A four-level atomic system with a closed interaction loop connected by two coherent driving fields and a microwave field is investigated. The results show that inversionless gain can be achieved on a higher frequency transition outside the closed interaction loop, and the gain behaviour can be modulated by the phase of the closed loop as well as the amplitude of the microwave field. The phase sensitivity property in such a scheme is similar to that in an analogous configuration with spontaneously generated coherence, but it is beyond the rigorous condition of near-degenerate levels with non-orthogonal dipole moments. Therefore this scheme is much more convenient in experimental realization.
基金supported by the National Natural Science Foundation of China(Nos.51875287, 52075250)the Special Fund for Transformation of Scientific,and Technological Achievements of Jiangsu Province(No.BA2018053)
文摘The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.