Satellite disciplined clock system(SDCS)composed of satellite timing receiver and local frequency synthesis is widely applied for its high accuracy and low cost.This paper provides a review of SDCS.Key technologies su...Satellite disciplined clock system(SDCS)composed of satellite timing receiver and local frequency synthesis is widely applied for its high accuracy and low cost.This paper provides a review of SDCS.Key technologies such as phase difference measurement,pulse noise process and frequency calibration are surveyed in detail.Disciplined clock model based on PI controller is built and disciplined process is analyzed.The methods of realizing the disciplined clock circuit are classified and summarized.A prototype based on FPGA is proposed.At last development trend of SDCS is discussed.展开更多
A progressive decline in fertility is a well-documented aspect of female aging and is associated with a range of cellular and molecular alterations,including genomic instability and modifications in epigenetic regulat...A progressive decline in fertility is a well-documented aspect of female aging and is associated with a range of cellular and molecular alterations,including genomic instability and modifications in epigenetic regulation.Epigenetic clocks,which estimate biological age based on DNA methylation patterns,have been extensively utilized to evaluate general health status and the risk of various diseases.Despite their broad application,the utility of epigenetic clocks in assessing female reproductive health remains only partially characterized.This minireview consolidates recent advancements in the application of epigenetic clocks to evaluate the functional status of the female reproductive system.The objective is to investigate their potential for quantifying and predicting the biological age of reproductive tissues,thereby establishing a theoretical basis for clinical applications in reproductive medicine.To date,no comprehensive minireview has systematically examined multi-tissue epigenetic clock models in the context of female reproductive aging,positioning this minireview as a novel contribution to the field.展开更多
Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were ra...Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were randomized equally into control group and heat stress group.After exposure to 32℃for 2 weeks in the latter group,the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry.In the cell experiments,cultured rat thoracic aortic endothelial cells(RTAECs)were incubated at 40℃for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA(si-Bmal1)or a negative sequence.In both rat thoracic aorta and RTAECs,the expressions of Bmal1,the cell cycle proteins CDK1,CDK4,CDK6,and cyclin B1,and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting.TUNEL staining was used to detect cell apoptosis in rat thoracic aorta,and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.Results Compared with the control rats,the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1,cyclin B1 and CDK1 in the thoracic aorta(P<0.05).In cultured RTAECs,heat stress caused significant increase of Bmal1,cyclin B1 and CDK1 protein expression levels,which were obviously lowered in cells with prior si-Bmal1 transfection.Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.Conclusion Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells,which can be partly alleviated by suppressing Bmal1 expression.展开更多
The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and compe...The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and competitive advantages to survive and thrive under natural conditions through the circadian control of gene transcription. Chinese cabbage(Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide, although there is little information concerning its circadian clock system. Here we found that gene expression patterns are affected bycircadian oscillators at both the transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines(SPcc-1 and SPcc-2) and two long-period lines(LPcc-1 and LPcc-2) under constant light. The results showed that 32.7–50.5% of the genes were regulated bythe circadian oscillator and the expression peaks of cycling genes appeared earlier in short-period lines than long-period lines. In addition, approximately 250 splicing events exhibited circadian regulation, with intron retention(IR) accounting for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATEDHYPOCOTYL(BrLHY), REVEILLE 2(BrRVE2) and EARLY FLOWERING 3(BrELF3). We also found that thecircadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, the Calvin cycle and the tricarboxylic acid(TCA) cycle at both the transcriptional andpost-transcriptional levels. The collective results of this study demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.展开更多
The circadian system of mammals is composed of a hierarchical network of oscillators,including a core clock and peripheral clocks.The core clock receives an external photic signal and transmits it to the peripheral cl...The circadian system of mammals is composed of a hierarchical network of oscillators,including a core clock and peripheral clocks.The core clock receives an external photic signal and transmits it to the peripheral clocks,which,in turn,feed back to the core clock.Aging affects various functions of organisms including the circadian system.Entrainment displays the adaptability of the circadian system to changes in the external environment.However,there is currently no systematic study on the effects of aging on the entrainment capability.To explore the influencing mechanism,we develop a mathematical model of two populations of Goodwin oscillators,which represent the core clock and peripheral clocks.Based on numerical simulations,we conduct a detailed study on the impact of three aging-related factors on the entrainment capability represented by the entrainment range,entrainment time,and entrainment phase.The results indicate that the decrease in the sensitivity of suprachiasmatic nucleus(SCN)to light and the coupling strength from the SCN to the peripheral clocks due to aging increase the phase difference between the core and peripheral clocks,narrow the entrainment range,and prolong the entrainment time.A reduction in the coupling strength within the SCN has little effect on the three aspects mentioned above but increases the entrainment phase.Overall,aging reduces the circadian system's adaptability to the external environment,and the increased entrainment phase may lead to corresponding sleep problems.We also show that modulating the internal coupling strength in the peripheral clocks can mitigate aging effects;this provides an idea for using peripheral clocks to adjust the core clock,while also revealing new insights into the interaction between aging and the elasticity of the circadian system.This mechanism provides theoretical support for treating or alleviating circadian system disorders or sleep problems caused by aging.展开更多
The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms.Testosterone,as one of the most critical sex hormones,is essential for th...The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms.Testosterone,as one of the most critical sex hormones,is essential for the development of the reproductive system,maintenance of reproductive function,and the overall health of males.The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes.Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis.We also examined the specific effects of these genes on the occurrence,development,and treatment of common male diseases,including late-onset hypogonadism,erectile dysfunction,male infertility,and prostate cancer.展开更多
This study presents an achievement of laser cooling of alkaline-earth atoms in the Chinese Space Station’s strontium(Sr)atomic space optical clock.The system’s core components,physical unit,optical unit,and electric...This study presents an achievement of laser cooling of alkaline-earth atoms in the Chinese Space Station’s strontium(Sr)atomic space optical clock.The system’s core components,physical unit,optical unit,and electrical unit,have a total volume of 306 L and a total mass of 163.8 kg.These compact and robust units can overcome mechanical vibrations and temperature fluctuations during space launch.The laser sources of the optical unit are composed of diode lasers,and the injection locking of slave lasers is automatically performed by a program.In the experiment,a blue magneto-optical trap of cold atoms was achieved,with the atom numbers estimated to be approximately(1.50±0.13)×10^(6) for 87Sr and(8.00±0.56)×10^(6) for 88Sr.This work establishes a foundation for atomic confinement and high-precision interrogation in space-based optical clocks and expands the frontiers of cold atom physics in microgravity.展开更多
The phenomenon that a clock at a higher gravitational potential ticks faster than one at a lower potential,also known as gravitational redshift,is one of the classical tests of Einstein’s theory of general relativity...The phenomenon that a clock at a higher gravitational potential ticks faster than one at a lower potential,also known as gravitational redshift,is one of the classical tests of Einstein’s theory of general relativity.Owing to their ultra-high accuracy and stability,state-of-the-art optical lattice clocks have enabled resolving the gravitational redshift with a millimeter-scale height difference.Further reducing the vertical inter-clock separation down to the sub-millimeter level and especially shortening the required measurement time may be achieved by employing spin squeezing.Here,we theoretically investigate the spin-squeezing-enhanced differential frequency comparison between two optical clocks within a lattice-trapped cloud of^(171)Yb atoms.The numerical results illustrate that for a sample of 10^(4)atoms,the atomic-collision-limited resolution of the vertical separation between two clocks can reach 0.48 mm,corresponding to a fractional gravitational redshift at the 10^(-20)level.In addition,the required averaging time may be reduced to less than one hundredth of that of conventional clocks with independent atoms.Our work opens a door to the future spin-squeezing-enhanced test of general relativity.展开更多
We present analog clocks fitted to the Mars solar day.These clocks use the standard Earth-based second of the International System of Units(SI)as their operational unit of time,unlike current practice for Mars timekee...We present analog clocks fitted to the Mars solar day.These clocks use the standard Earth-based second of the International System of Units(SI)as their operational unit of time,unlike current practice for Mars timekeeping.We discuss the importance of preserving the SI second.On this basis,we identify the two analog clocks most suitable for public use by a future Mars population.These are a 20-hour clock with a hand motion similar to that of the standard Earth clock,and a 24-hour clock with a novel“Martian”hand motion which strikes the hour when all 3 hands converge onto that hour mark on the dial.Both clocks have Earth-day equivalents to assist learning.We also present a 24-hour“SpaceClock”,similar to the Martian clock but with no favored reference plane,hence equally readable from any viewing orientation.展开更多
The circadian clock is a highly conserved timekeeping system in organisms,which maintains physiological homeostasis by precisely regulating periodic fluctuations in gene expression.Substantial clinical and experimenta...The circadian clock is a highly conserved timekeeping system in organisms,which maintains physiological homeostasis by precisely regulating periodic fluctuations in gene expression.Substantial clinical and experimental evidence has established a close association between circadian rhythm disruption and the development of various malignancies.Research has revealed characteristic alterations in the circadian gene expression profiles in tumor tissues,primarily manifested as a dysfunction of core clock components(particularly circadian locomotor output cycles kaput(CLOCK)and brain and muscle ARNT-like 1(BMAL1))and the widespread dysregulation of their downstream target genes.Notably,CLOCK demonstrates non-canonical oncogenic functions,including epigenetic regulation via histone acetyltransferase activity and the circadian-independent modulation of cancer pathways.This review systematically elaborates on the oncogenic mechanisms mediated by CLOCK/BMAL1,encompassing multidimensional effects such as cell cycle control,DNA damage response,metabolic reprogramming,and tumor microenvironment(TME)remodeling.Regarding the therapeutic strategies,we focus on cutting-edge approaches such as chrononutritional interventions,chronopharmacological modulation,and treatment regimen optimization,along with a discussion of future perspectives.The research breakthroughs highlighted in this work not only deepen our understanding of the crucial role of circadian regulation in cancer biology but also provide novel insights for the development of chronotherapeutic oncology,particularly through targeting the non-canonical functions of circadian proteins to develop innovative anti-cancer strategies.展开更多
We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, ma...We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.展开更多
Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the ...Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the table, our system is more compact, more robust and miniaturized. Taking advantage of this system, laser beams are transmitted through eight optical fibre patch cords from the optical breadboard to an ultra high vacuum system. This optical setup has operated for five months in our fountain system and required no alignment.展开更多
For modern particle physics experiments,trigger-less data acquisition(DAQ) system has been put into practice because of the need of reaction multiplicity and trigger flexibility.In such new DAQ systems,global synchron...For modern particle physics experiments,trigger-less data acquisition(DAQ) system has been put into practice because of the need of reaction multiplicity and trigger flexibility.In such new DAQ systems,global synchronized clock plays an important role because it affects the granularity of time slice and precision of reference clock.In this paper,a novel synchronized clock distribution method is proposed.With the help of modulation technique,master clock module distributes system clock to each slave module.To synchronize slave clocks,the propagation delay is adjusted and the clock phase is aligned by an FPGA chip automatically.Furthermore,an ADCbased method is proposed to evaluate the performance of multi-module clock synchronization simultaneously.The experiments of a prototype system show that slave clocks can be synchronized less than 100 ps over 150 m range.The proposed method is simple and flexible,and it can be used in trigger-less DAQ system and other applications of clock distribution preciously.展开更多
This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic st...This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.展开更多
We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
文摘Satellite disciplined clock system(SDCS)composed of satellite timing receiver and local frequency synthesis is widely applied for its high accuracy and low cost.This paper provides a review of SDCS.Key technologies such as phase difference measurement,pulse noise process and frequency calibration are surveyed in detail.Disciplined clock model based on PI controller is built and disciplined process is analyzed.The methods of realizing the disciplined clock circuit are classified and summarized.A prototype based on FPGA is proposed.At last development trend of SDCS is discussed.
文摘A progressive decline in fertility is a well-documented aspect of female aging and is associated with a range of cellular and molecular alterations,including genomic instability and modifications in epigenetic regulation.Epigenetic clocks,which estimate biological age based on DNA methylation patterns,have been extensively utilized to evaluate general health status and the risk of various diseases.Despite their broad application,the utility of epigenetic clocks in assessing female reproductive health remains only partially characterized.This minireview consolidates recent advancements in the application of epigenetic clocks to evaluate the functional status of the female reproductive system.The objective is to investigate their potential for quantifying and predicting the biological age of reproductive tissues,thereby establishing a theoretical basis for clinical applications in reproductive medicine.To date,no comprehensive minireview has systematically examined multi-tissue epigenetic clock models in the context of female reproductive aging,positioning this minireview as a novel contribution to the field.
文摘Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were randomized equally into control group and heat stress group.After exposure to 32℃for 2 weeks in the latter group,the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry.In the cell experiments,cultured rat thoracic aortic endothelial cells(RTAECs)were incubated at 40℃for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA(si-Bmal1)or a negative sequence.In both rat thoracic aorta and RTAECs,the expressions of Bmal1,the cell cycle proteins CDK1,CDK4,CDK6,and cyclin B1,and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting.TUNEL staining was used to detect cell apoptosis in rat thoracic aorta,and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.Results Compared with the control rats,the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1,cyclin B1 and CDK1 in the thoracic aorta(P<0.05).In cultured RTAECs,heat stress caused significant increase of Bmal1,cyclin B1 and CDK1 protein expression levels,which were obviously lowered in cells with prior si-Bmal1 transfection.Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.Conclusion Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells,which can be partly alleviated by suppressing Bmal1 expression.
基金supported by the Science and Technology Program of Hebei Province, China (236Z2903G)the Innovative Research Group Project of Hebei Natural Science Foundation, China (C2024204246)+1 种基金the Hebei International Joint Research Center of Vegetable Functional Genomicsthe International Joint R&D Center of Hebei Province in Modern Agricultural Biotechnology for supporting this work。
文摘The plant circadian clock temporally drives gene expression throughout the day and coordinates various physiological processes with diurnal environmental changes. It is essential for conferring plant fitness and competitive advantages to survive and thrive under natural conditions through the circadian control of gene transcription. Chinese cabbage(Brassica rapa ssp. pekinensis) is an economically important vegetable crop worldwide, although there is little information concerning its circadian clock system. Here we found that gene expression patterns are affected bycircadian oscillators at both the transcriptional and post-transcriptional levels in Chinese cabbage. Time-course RNA-seq analyses were conducted on two short-period lines(SPcc-1 and SPcc-2) and two long-period lines(LPcc-1 and LPcc-2) under constant light. The results showed that 32.7–50.5% of the genes were regulated bythe circadian oscillator and the expression peaks of cycling genes appeared earlier in short-period lines than long-period lines. In addition, approximately 250 splicing events exhibited circadian regulation, with intron retention(IR) accounting for a large proportion. Rhythmically spliced genes included the clock genes LATE ELONGATEDHYPOCOTYL(BrLHY), REVEILLE 2(BrRVE2) and EARLY FLOWERING 3(BrELF3). We also found that thecircadian oscillator could notably influence the diurnal expression patterns of genes that are associated with glucose metabolism via photosynthesis, the Calvin cycle and the tricarboxylic acid(TCA) cycle at both the transcriptional andpost-transcriptional levels. The collective results of this study demonstrate that circadian-regulated physiological processes contribute to Chinese cabbage growth and development.
基金Project supported by the graduate training funds of Shanghai Ocean University in China。
文摘The circadian system of mammals is composed of a hierarchical network of oscillators,including a core clock and peripheral clocks.The core clock receives an external photic signal and transmits it to the peripheral clocks,which,in turn,feed back to the core clock.Aging affects various functions of organisms including the circadian system.Entrainment displays the adaptability of the circadian system to changes in the external environment.However,there is currently no systematic study on the effects of aging on the entrainment capability.To explore the influencing mechanism,we develop a mathematical model of two populations of Goodwin oscillators,which represent the core clock and peripheral clocks.Based on numerical simulations,we conduct a detailed study on the impact of three aging-related factors on the entrainment capability represented by the entrainment range,entrainment time,and entrainment phase.The results indicate that the decrease in the sensitivity of suprachiasmatic nucleus(SCN)to light and the coupling strength from the SCN to the peripheral clocks due to aging increase the phase difference between the core and peripheral clocks,narrow the entrainment range,and prolong the entrainment time.A reduction in the coupling strength within the SCN has little effect on the three aspects mentioned above but increases the entrainment phase.Overall,aging reduces the circadian system's adaptability to the external environment,and the increased entrainment phase may lead to corresponding sleep problems.We also show that modulating the internal coupling strength in the peripheral clocks can mitigate aging effects;this provides an idea for using peripheral clocks to adjust the core clock,while also revealing new insights into the interaction between aging and the elasticity of the circadian system.This mechanism provides theoretical support for treating or alleviating circadian system disorders or sleep problems caused by aging.
基金supported by grants from the National Natural Science Foundation of China(N0.82474525 and No.82074444)the Hunan Provincial Natural Outstanding Young People Science Foundation(2023JJ10032)the Hunan Province Health and High-Level Talent Medical Academic Leader Training Plan(20240304051).
文摘The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms.Testosterone,as one of the most critical sex hormones,is essential for the development of the reproductive system,maintenance of reproductive function,and the overall health of males.The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes.Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis.We also examined the specific effects of these genes on the occurrence,development,and treatment of common male diseases,including late-onset hypogonadism,erectile dysfunction,male infertility,and prostate cancer.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB35010202)the National Natural Science Foundation of China(Grants No.62275268)。
文摘This study presents an achievement of laser cooling of alkaline-earth atoms in the Chinese Space Station’s strontium(Sr)atomic space optical clock.The system’s core components,physical unit,optical unit,and electrical unit,have a total volume of 306 L and a total mass of 163.8 kg.These compact and robust units can overcome mechanical vibrations and temperature fluctuations during space launch.The laser sources of the optical unit are composed of diode lasers,and the injection locking of slave lasers is automatically performed by a program.In the experiment,a blue magneto-optical trap of cold atoms was achieved,with the atom numbers estimated to be approximately(1.50±0.13)×10^(6) for 87Sr and(8.00±0.56)×10^(6) for 88Sr.This work establishes a foundation for atomic confinement and high-precision interrogation in space-based optical clocks and expands the frontiers of cold atom physics in microgravity.
基金supported by CAS Project for Young Scientists in Basic Research(Grant No.YSBR-085)the National Time Service Center(Grant No.E239SC1101)+1 种基金Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303200)China Postdoctoral Science Foundation(Grant No.BX2021020).
文摘The phenomenon that a clock at a higher gravitational potential ticks faster than one at a lower potential,also known as gravitational redshift,is one of the classical tests of Einstein’s theory of general relativity.Owing to their ultra-high accuracy and stability,state-of-the-art optical lattice clocks have enabled resolving the gravitational redshift with a millimeter-scale height difference.Further reducing the vertical inter-clock separation down to the sub-millimeter level and especially shortening the required measurement time may be achieved by employing spin squeezing.Here,we theoretically investigate the spin-squeezing-enhanced differential frequency comparison between two optical clocks within a lattice-trapped cloud of^(171)Yb atoms.The numerical results illustrate that for a sample of 10^(4)atoms,the atomic-collision-limited resolution of the vertical separation between two clocks can reach 0.48 mm,corresponding to a fractional gravitational redshift at the 10^(-20)level.In addition,the required averaging time may be reduced to less than one hundredth of that of conventional clocks with independent atoms.Our work opens a door to the future spin-squeezing-enhanced test of general relativity.
文摘We present analog clocks fitted to the Mars solar day.These clocks use the standard Earth-based second of the International System of Units(SI)as their operational unit of time,unlike current practice for Mars timekeeping.We discuss the importance of preserving the SI second.On this basis,we identify the two analog clocks most suitable for public use by a future Mars population.These are a 20-hour clock with a hand motion similar to that of the standard Earth clock,and a 24-hour clock with a novel“Martian”hand motion which strikes the hour when all 3 hands converge onto that hour mark on the dial.Both clocks have Earth-day equivalents to assist learning.We also present a 24-hour“SpaceClock”,similar to the Martian clock but with no favored reference plane,hence equally readable from any viewing orientation.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(Nos.2020YFA0803300 and 2021YFA0805600)the National Natural Science Foundation of China(Nos.92157113,82072630,82173114,82072903,82272872,82002811,82188102,and 82030074)+2 种基金the Zhejiang Natural Science Foundation Key Project(Nos.LD22H160002 and LD21H160003)the Zhejiang Natural Science Foundation Discovery Project(No.LQ22H160023)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2019R01001),China.
文摘The circadian clock is a highly conserved timekeeping system in organisms,which maintains physiological homeostasis by precisely regulating periodic fluctuations in gene expression.Substantial clinical and experimental evidence has established a close association between circadian rhythm disruption and the development of various malignancies.Research has revealed characteristic alterations in the circadian gene expression profiles in tumor tissues,primarily manifested as a dysfunction of core clock components(particularly circadian locomotor output cycles kaput(CLOCK)and brain and muscle ARNT-like 1(BMAL1))and the widespread dysregulation of their downstream target genes.Notably,CLOCK demonstrates non-canonical oncogenic functions,including epigenetic regulation via histone acetyltransferase activity and the circadian-independent modulation of cancer pathways.This review systematically elaborates on the oncogenic mechanisms mediated by CLOCK/BMAL1,encompassing multidimensional effects such as cell cycle control,DNA damage response,metabolic reprogramming,and tumor microenvironment(TME)remodeling.Regarding the therapeutic strategies,we focus on cutting-edge approaches such as chrononutritional interventions,chronopharmacological modulation,and treatment regimen optimization,along with a discussion of future perspectives.The research breakthroughs highlighted in this work not only deepen our understanding of the crucial role of circadian regulation in cancer biology but also provide novel insights for the development of chronotherapeutic oncology,particularly through targeting the non-canonical functions of circadian proteins to develop innovative anti-cancer strategies.
文摘We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.
文摘Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the table, our system is more compact, more robust and miniaturized. Taking advantage of this system, laser beams are transmitted through eight optical fibre patch cords from the optical breadboard to an ultra high vacuum system. This optical setup has operated for five months in our fountain system and required no alignment.
基金Supported by the National Natural Science Foundation of China(No.11005107)Anhui University Natural Science Research(No.K J2010A334)
文摘For modern particle physics experiments,trigger-less data acquisition(DAQ) system has been put into practice because of the need of reaction multiplicity and trigger flexibility.In such new DAQ systems,global synchronized clock plays an important role because it affects the granularity of time slice and precision of reference clock.In this paper,a novel synchronized clock distribution method is proposed.With the help of modulation technique,master clock module distributes system clock to each slave module.To synchronize slave clocks,the propagation delay is adjusted and the clock phase is aligned by an FPGA chip automatically.Furthermore,an ADCbased method is proposed to evaluate the performance of multi-module clock synchronization simultaneously.The experiments of a prototype system show that slave clocks can be synchronized less than 100 ps over 150 m range.The proposed method is simple and flexible,and it can be used in trigger-less DAQ system and other applications of clock distribution preciously.
基金Project supported by the Space Application System of China Manned Space Programthe Youth Innovation Promotion Association,CAS。
文摘This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.