期刊文献+
共找到305篇文章
< 1 2 16 >
每页显示 20 50 100
Large Ensemble Simulations of Climate Models for Climate Change Research:A Review
1
作者 Pengfei LIN Lu YANG +7 位作者 Bowen ZHAO Hailong LIU Pengfei WANG Wenrong BAI Jing MA Jilin WEI Chenyang JIN Yuewen DING 《Advances in Atmospheric Sciences》 2025年第5期825-841,共17页
In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly explo... In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly exploited in the fields of climate change,climate variability,climate projection,and beyond.This paper provides an overview of LENS in climate systems.It delves into its definition,initialization,significance,and scientific concerns.Additionally,its development history and relevant theories,methods,and primary fields of application are also reviewed.Conclusions obtained from single-model LENS can be more robust compared with those from ensemble simulations with smaller numbers of members.The interactions among model biases,forced responses,and internal variabilities,which serve as the added value in LENS,are highlighted.Finally,we put forward the future trajectory of LENS with climate or Earth system models(ESMs).Super-large ensemble simulation,high-resolution LENS,LENS employing ESMs,and combining LENS with artificial intelligence,will greatly promote the study of climate and related applications. 展开更多
关键词 large ensemble internal variability climate system model climate change external forcing
在线阅读 下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:4
2
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
在线阅读 下载PDF
Global Well-Posedness of the Fractional Tropical Climate Model
3
作者 Meiqi Hu 《Journal of Applied Mathematics and Physics》 2024年第3期805-818,共14页
In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the ... In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system. 展开更多
关键词 Tropical climate model Fractional Diffusion Global Existence
在线阅读 下载PDF
Projections of Wind Changes for 21st Century in China by Three Regional Climate Models 被引量:13
4
作者 JIANG Ying Luo Yong +3 位作者 ZHAO Zongci SHI Ying XU Yinlong ZHU Jinhong 《Chinese Geographical Science》 SCIE CSCD 2010年第3期226-235,共10页
This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studi... This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored. 展开更多
关键词 wind speed PROJECTION regional climate model global climate model
在线阅读 下载PDF
An Introduction to the Integrated Climate Model of the Center for Monsoon System Research and Its Simulated Influence of El Ni?no on East Asian–Western North Pacific Climate 被引量:5
5
作者 HUANG Ping WANG Pengfei +4 位作者 HU Kaiming HUANG Gang ZHANG Zhihua LIU Yong YAN Bangliang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1136-1146,共11页
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Res... This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate. 展开更多
关键词 Integrated climate model (ICM) global climate model E1 Nifio East Asian climate
在线阅读 下载PDF
An Alternative Means of Assessing Climate Models
6
作者 D. Bray H. von Storch 《Journal of Environmental Science and Engineering》 2011年第8期1053-1062,共10页
The authors compared two different sets of assessment of the abilities of contemporary climate models. One group is made of experts, and their results are provided in two expert reports, while the other is the subject... The authors compared two different sets of assessment of the abilities of contemporary climate models. One group is made of experts, and their results are provided in two expert reports, while the other is the subjective assessment made by "physical climate scientists" in general, sampled in a series of three survey questionnaires. The expert group is considerably more optimistic than the general group; the former suggesting progress, while the perception of the latter group is more or less stationary. 展开更多
关键词 climate modelling climate model assessment survey of climate scientists.
在线阅读 下载PDF
Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM_NCC). Part Ⅰ: Sensitivity Study 被引量:41
7
作者 丁一汇 史学丽 +6 位作者 刘一鸣 刘艳 李清泉 钱永甫 苗蔓倩 翟国庆 高昆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期323-341,共19页
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcast... A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions. 展开更多
关键词 regional climate model sensitivity experiment physical process parameterization MEI-YU
在线阅读 下载PDF
Multi-Year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM_NCC) Part Ⅱ:The Experimental Seasonal Prediction 被引量:28
8
作者 丁一汇 刘一鸣 +3 位作者 史学丽 李清泉 李巧萍 刘艳 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期487-503,共17页
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM... A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations. 展开更多
关键词 regional climate model simulation HINDCAST PREDICTION
在线阅读 下载PDF
The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model 被引量:33
9
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期31-47,共17页
Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asi... Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40–110°E, 10–20°N), including the Indian monsoon and the Southeast Asian monsoon, while the EAM de-fined in this paper is located in the subtropical region of East Asia (110–125°E, 20–40°N). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper. In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anoma-lous winter EAM may have some correlation with the succeeding summer EAM, but this relation-ship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well. Key words East Asian monsoon - Interannual variability - Coupled climate model The author wishes to thank Profs. Wu G.X., Zhang X.H., and Dr. Yu Y.Q. for providing the coupled model re-sults. Dr. Yu also kindly provided assistance in using the model output. This work was supported jointly by the Na-tional Natural Science Foundation of China key project ’ The analysis on the seasonal-to-interannual variation of the general circulation’ under contract 49735160 and Chinese Academy of Sciences key project ’ The Interannual Va-riability and Predictability of East Asian Monsoon’. 展开更多
关键词 East Asian monsoon Interannual variability Coupled climate model
在线阅读 下载PDF
Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model 被引量:35
10
作者 高学杰 罗勇 +2 位作者 林万涛 赵宗慈 Filippo GIORGI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期583-592,共10页
Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). T... Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas; an increase of mean annual surface air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics. 展开更多
关键词 land use change regional climate model regional climate change
在线阅读 下载PDF
Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate Model 被引量:55
11
作者 高学杰 赵宗慈 +2 位作者 丁一汇 黄荣辉 Filippo Giorgi 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第6期1224-1230,共7页
Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a... Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 × CO2) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 × CO2 showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO2 doubling. Key words Regional climate model - Greenhouse effect This research was supported by National Key Programme for Developing Basic Sciences (G1998040900 — Part I), Chinese Academy of Sciences Key Program KZCX2-203 and KZ981-B1-108. 展开更多
关键词 Regional climate model Greenhouse effect
在线阅读 下载PDF
SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL 被引量:16
12
作者 张冬峰 高学杰 +1 位作者 欧阳里程 董文杰 《Journal of Tropical Meteorology》 SCIE 2008年第1期19-23,共5页
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p... A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation. 展开更多
关键词 regional climate model climate simulation EVALUATION East Asia region China
在线阅读 下载PDF
Asian Summer Monsoon Onset in Simulations and CMIP5 Projections Using Four Chinese Climate Models 被引量:10
13
作者 ZOU Liwei ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期794-806,共13页
The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways (RCP) scenario in which anthropo... The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways (RCP) scenario in which anthropogenic emissions continue to rise throughout the 21 st century (i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May. A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore, and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific, enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal (near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations. 展开更多
关键词 Asian summer monsoon ONSET climate projection Chinese climate models
在线阅读 下载PDF
Regional Climate Change and Uncertainty Analysis based on Four Regional Climate Model Simulations over China 被引量:12
14
作者 WU Jia GAO Xue-Jie +1 位作者 XU Yin-Long PAN Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期147-152,共6页
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc... Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation). 展开更多
关键词 climate change regional climate model ENSEMBLE China
在线阅读 下载PDF
Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model 被引量:8
15
作者 辛晓歌 Zhaoxin LI +1 位作者 宇如聪 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期555-562,共8页
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ... Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades. 展开更多
关键词 Southeast China spring drought inter-decadal variability regional climate modeling
在线阅读 下载PDF
Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations 被引量:9
16
作者 Peihua QIN Zhenghui XIE +2 位作者 Jing ZOU Shuang LIU Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期460-479,共20页
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes ... The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level). 展开更多
关键词 precipitation extremes regional climate model CMIP5 models
在线阅读 下载PDF
The effect of the wave-induced mixing on the upper ocean temperature in a climate model 被引量:5
17
作者 HUANG Chuanjiang QIAO Fangli SONG Zhenya 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第3期104-111,共8页
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the te... The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately. 展开更多
关键词 surface wave vertical mixing SST upper ocean temperature climate model
在线阅读 下载PDF
Decreasing Trend in Global Land Monsoon Precipitation over the Past 50 Years Simulated by a Coupled Climate Model 被引量:5
18
作者 李红梅 周天军 李超 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第2期285-292,共8页
The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model ... The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model HadGEM1, which was developed by the Met Office Hadley Centre for Climate Research. The results indicate that HadGEM1 performs well in simulating the observed decreasing trend of global land monsoon precipitation over the past 50 years. This trend mainly occurred in the Northern Hemisphere and is significantly different from the trend of natural variability due to ocean-atmosphere-land interactions. The coherence between the simulation and the observations indicates that the specified external forcing agents, including GHGs and aerosols as well as solar variability and ozone, are important factors that have affected the decreasing trend of global land monsoon precipitation in the past 50 years. 展开更多
关键词 monsoon precipitation decreasing trend coupled climate model external forcings
在线阅读 下载PDF
Development and Validation of a Simple Frozen SoilParameterization Scheme Used for Climate Model 被引量:5
19
作者 张 宇 吕世华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期513-527,共15页
A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil i... A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil ice content and the energy change in phase change process is considered; the original soil thermal conductivity scheme is replaced by Johanson scheme and the soil thermal and hydraulic properties is modi-fied depending on soil ice content. The comparison of original model with revised model results indicates that the frozen soil scheme can reasonably simulate the energy budget in soil column and the variation of thermal and hydraulic properties as the soil ice content changes. Soil moisture in spring is decreased because of the reduction of infiltration and increment of runoff. Consequently, the partition of heat flux and surface temperature changes correspondingly. 展开更多
关键词 Frozen soil parameterization Land surface model climate model
在线阅读 下载PDF
Application of an Economy-Climate Model to Assess the Impact of Climate Change 被引量:4
20
作者 丑洁明 董文杰 封国林 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期957-965,共9页
An interdisciplinary investigation was conducted to assess the impact of climate change on grain yields using an economy-climate model (C-D-C). The model was formulated by incorporating climate factors into the clas... An interdisciplinary investigation was conducted to assess the impact of climate change on grain yields using an economy-climate model (C-D-C). The model was formulated by incorporating climate factors into the classic Cobb-Douglas (C-D) economic production function model. The economic meanings of the model output elasticities are described and elucidated. The C-D-C model was applied to the assessment of the impact of climate change on grain yields in China during the past 20 years, from 1983 through 2002. In the study, the land of China was divided into eight regions, and both the C-D-C and C-D models were applied to each individual region. The results suggest that the C-D-C model is superior to the classic C-D model, indicating the importance of climate factors. Prospective applications of the C-D-C model are discussed. 展开更多
关键词 economy–climate model climate change production function grain yield
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部