The machining precision of blades is critical to the service performance of aero engines.The Leading Edge(LE) of high-pressure compressor blades poses a challenge for precision machining due to its thin size, high deg...The machining precision of blades is critical to the service performance of aero engines.The Leading Edge(LE) of high-pressure compressor blades poses a challenge for precision machining due to its thin size, high degree of bending, and significant change of curvature. Aimed at optimizing the machining error, this paper presents a framework that integrates toolpath planning and process parameter regulation. Firstly, an Iterative Subdivision Algorithm(ISA) for clamped Bspline curve is proposed, based on which toolpath planning method towards the LE is developed.Secondly, the removal effect of Cutter Contact(CC) point on the sampling points is investigated in the calculation of grinding dwell time by traversing in u-v space. A global material removal model is constructed for the solution. Thirdly, the previous two steps are interconnected based on the Improved Whale Optimization Algorithm(IWOA), and the optimal parameter combination is searched using the Root Mean Square Error(RMSE) of the machining error as the objective function. Based on this, the off-line programming and robotic grinding experiments are carried out. The experimental results show that the proposed method with error optimization can achieve 0.0143 mm mean value and 0.0160 mm standard deviations of LE surface error, which is an improvement of32.5% and 33.9%, respectively, compared with previous method.展开更多
The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutte...The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutter in the rough machining of a blisk channel, the trochoidal milling is a promising strategy since it can keep a small immersion angle in the rough milling process while maintaining the high machining efficiency. However, while toolpaths are being planned for the trochoidal milling process, the conventional methods are mainly for the planar machining area with fixed tool orientations, which cannot be used for complex channels where the multi-axis machining should be employed. To this end, this paper presents a four-axis trochoidal toolpath planning method with a ball-end cutter, and thus the blisk channel can be machined efficiently.For this to happen, the trochoidal paths are planned in the parametric domain and then mapped into the physical domain, with tool orientations controlled by the quaternion interpolation method to have smooth tool movement along the toolpaths. Both geometric simulation and physical milling experiments of the proposed method have convincingly demonstrated the validation of the proposed method.展开更多
Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path g...Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path generation method is presented, which employs an approach based on point-searching. The clean-up machining mentioned in this paper is pencil-cut and multilayer fillet-cut for a free-form model with a ball-end cutter. For pencil-cut, the cutter center position can be determined via judging whether it satisfies the distance requirement. After the searching direction and the tracing direction have been determined, by employing the point-searching algorithm with the idea of dichotomy, all the cutter contact (CC) points and cutter location (CL) points can be found and the clean-up boundaries can also be defined rapidly. Then the tool path is generated. Based on the main concept of pencil-cut, a multilayer fillet-cut method is proposed, which utilizes a ball-end cutter with its radius less than the design radius of clean-up region. Using a sequence of intermediate virtual cutters to divide the clean-up region into several layers and given a cusp-height tolerance for the final layer, then the tool paths for all layers are calculated. Finally, computer implementation is also presented in this paper, and the result shows that the proposed method is feasible.展开更多
In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Base...In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.展开更多
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from ...Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.展开更多
Driven by the ever increasing demand in function integration,more and more next generation high value-added products,such as head-up displays,solar concentrators and intra-ocular-lens,etc.,are designed to possess free...Driven by the ever increasing demand in function integration,more and more next generation high value-added products,such as head-up displays,solar concentrators and intra-ocular-lens,etc.,are designed to possess freeform(i.e.,non-rotational symmetric)surfaces.The toolpath,composed of high density of short linear and circular segments,is generally used in computer numerical control(CNC)systems to machine those products.However,the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration,which will decrease the machining efficiency and product surface finish.Driven by the ever-increasing need for high-speed high-precision machining of those products,many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry,aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods.This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications.The advantages and disadvantages of these approaches are discussed.Possible future research directions are also offered.展开更多
A rapid, cost effective and reliable analytical method was developed and validated for the simultaneous determination of four estrogens (17 β-estradiol, 17 α-ethinylestradiol, estrone, and estriol) in compost sample...A rapid, cost effective and reliable analytical method was developed and validated for the simultaneous determination of four estrogens (17 β-estradiol, 17 α-ethinylestradiol, estrone, and estriol) in compost samples from the biodegradation of biological infectious hazardous wastes. Ultrasonic solvent extraction, using methanol as extraction solvent, coupled with SPE clean-up, using cartridges HLB 60 mg - 6 ml Supelco®<sup></sup> and acetonitrile for reconstitution of eluents, was used for the simultaneous extraction of the four estrogens. Mean recoveries in the range of 98% - 107% were obtained. All compounds were separated in a single gradient run by UHPLC Kinetex<sup>TM</sup> 2.6 μm XB-C18 100 ÅLC (50 × 4.6 mm) column. Analytes were detected via multiple reaction monitoring (MRM) using an AB SCIEX API-5000TM triple quadrupole (Applied Biosystems/MDS SCIEX) with electrospray ionization in negative mode. Isocratic mobile phase of Water:ACN (50:50) resulted to be the optimum. Limits of detection and quantification were on the order of 0.66 ng·g<sup>-1</sup> and 2 ng·g<sup>-1</sup> for all the estrogens. These limits were lower than most of the values reported in the literature for similar matrices. Suitable level of linearity, good repeatability and reproducibility with coefficients of variation is lower than 11.7%, 6.8% and 8.3%, respectively.展开更多
Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center ...Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center toolpath is of G1 continuity and that the grinding depth is controllable at the corners,a transition toolpath generation method based on a velocity-blending algorithm is proposed.Taking the grinding depth into consideration,the sharp-corner grinding process is planned,and a velocity-blending algorithm is introduced.With the constraints,such as traverse displacement and grinding depth,the sharp-corner transition toolpath is generated with a three-phase motion arrangement and with confirmations of the acceleration/deceleration positions.A piece of glass with three sharp corners is ground on a three-axis numerical-control glass grinding equipment.The experimental results demonstrate that the proposed algorithm can protect the sharp corners from breakage efficiently and achieve satisfactory shape accuracy.This research proposed a toolpath generation method based on a velocity-blending algorithm for the manufacturing of personalized glass products,which generates the transition toolpath as needed around a sharp corner in real time.展开更多
Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In ...Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In order to solve these problems,a toolpath generation method of NC milling based on space-filling curve is proposed. First,T-spline surface is regarded as the modeling surface,the grid,which is based on the limited scallop-height,can be got in the parameter space,and the influence value of grid node is determined. Second,a box is defined and planned,and the tool paths are got preliminarily,which is based on minimal spanning tree; Finally,based on an improved chamfering algorithm,the whole tool paths are got. A simulation system is developed for computer simulation,and an experiment is carried out to verify the method. The results of simulation and experiment show that the method is effective and feasible,and length and time of the tool paths are reduced.展开更多
基金supported by the National Natural Science Foundation of China (No. 52075059)Graduate Scientific Research and Innovation Foundation of Chongqing (No. CYB23021)the Innovation Fund of Aero Engine Corporation of China (No. ZZCX-2022-019)。
文摘The machining precision of blades is critical to the service performance of aero engines.The Leading Edge(LE) of high-pressure compressor blades poses a challenge for precision machining due to its thin size, high degree of bending, and significant change of curvature. Aimed at optimizing the machining error, this paper presents a framework that integrates toolpath planning and process parameter regulation. Firstly, an Iterative Subdivision Algorithm(ISA) for clamped Bspline curve is proposed, based on which toolpath planning method towards the LE is developed.Secondly, the removal effect of Cutter Contact(CC) point on the sampling points is investigated in the calculation of grinding dwell time by traversing in u-v space. A global material removal model is constructed for the solution. Thirdly, the previous two steps are interconnected based on the Improved Whale Optimization Algorithm(IWOA), and the optimal parameter combination is searched using the Root Mean Square Error(RMSE) of the machining error as the objective function. Based on this, the off-line programming and robotic grinding experiments are carried out. The experimental results show that the proposed method with error optimization can achieve 0.0143 mm mean value and 0.0160 mm standard deviations of LE surface error, which is an improvement of32.5% and 33.9%, respectively, compared with previous method.
基金supported by the China National Science and Technology Major Project(No.2015ZX04001202)
文摘The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutter in the rough machining of a blisk channel, the trochoidal milling is a promising strategy since it can keep a small immersion angle in the rough milling process while maintaining the high machining efficiency. However, while toolpaths are being planned for the trochoidal milling process, the conventional methods are mainly for the planar machining area with fixed tool orientations, which cannot be used for complex channels where the multi-axis machining should be employed. To this end, this paper presents a four-axis trochoidal toolpath planning method with a ball-end cutter, and thus the blisk channel can be machined efficiently.For this to happen, the trochoidal paths are planned in the parametric domain and then mapped into the physical domain, with tool orientations controlled by the quaternion interpolation method to have smooth tool movement along the toolpaths. Both geometric simulation and physical milling experiments of the proposed method have convincingly demonstrated the validation of the proposed method.
基金National Natural Science Foundation of China (51005183) National Science and Technology Major Project (2011X04016-031)
文摘Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path generation method is presented, which employs an approach based on point-searching. The clean-up machining mentioned in this paper is pencil-cut and multilayer fillet-cut for a free-form model with a ball-end cutter. For pencil-cut, the cutter center position can be determined via judging whether it satisfies the distance requirement. After the searching direction and the tracing direction have been determined, by employing the point-searching algorithm with the idea of dichotomy, all the cutter contact (CC) points and cutter location (CL) points can be found and the clean-up boundaries can also be defined rapidly. Then the tool path is generated. Based on the main concept of pencil-cut, a multilayer fillet-cut method is proposed, which utilizes a ball-end cutter with its radius less than the design radius of clean-up region. Using a sequence of intermediate virtual cutters to divide the clean-up region into several layers and given a cusp-height tolerance for the final layer, then the tool paths for all layers are calculated. Finally, computer implementation is also presented in this paper, and the result shows that the proposed method is feasible.
文摘In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
基金the Ministry of Science and Technology of China under the Grant No. G2005CB221203the Natural Science Foundation of China under Contract No. 20576087.
文摘Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.
基金the support from the UK Engineering and Physical Sciences Research Council (EPSRC) under the program (No. EP/K018345/1)the International Cooperation Program of China (No. 2015DFA70630)
文摘Driven by the ever increasing demand in function integration,more and more next generation high value-added products,such as head-up displays,solar concentrators and intra-ocular-lens,etc.,are designed to possess freeform(i.e.,non-rotational symmetric)surfaces.The toolpath,composed of high density of short linear and circular segments,is generally used in computer numerical control(CNC)systems to machine those products.However,the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration,which will decrease the machining efficiency and product surface finish.Driven by the ever-increasing need for high-speed high-precision machining of those products,many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry,aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods.This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications.The advantages and disadvantages of these approaches are discussed.Possible future research directions are also offered.
文摘A rapid, cost effective and reliable analytical method was developed and validated for the simultaneous determination of four estrogens (17 β-estradiol, 17 α-ethinylestradiol, estrone, and estriol) in compost samples from the biodegradation of biological infectious hazardous wastes. Ultrasonic solvent extraction, using methanol as extraction solvent, coupled with SPE clean-up, using cartridges HLB 60 mg - 6 ml Supelco®<sup></sup> and acetonitrile for reconstitution of eluents, was used for the simultaneous extraction of the four estrogens. Mean recoveries in the range of 98% - 107% were obtained. All compounds were separated in a single gradient run by UHPLC Kinetex<sup>TM</sup> 2.6 μm XB-C18 100 ÅLC (50 × 4.6 mm) column. Analytes were detected via multiple reaction monitoring (MRM) using an AB SCIEX API-5000TM triple quadrupole (Applied Biosystems/MDS SCIEX) with electrospray ionization in negative mode. Isocratic mobile phase of Water:ACN (50:50) resulted to be the optimum. Limits of detection and quantification were on the order of 0.66 ng·g<sup>-1</sup> and 2 ng·g<sup>-1</sup> for all the estrogens. These limits were lower than most of the values reported in the literature for similar matrices. Suitable level of linearity, good repeatability and reproducibility with coefficients of variation is lower than 11.7%, 6.8% and 8.3%, respectively.
基金Supported by National Key R&D Program of China(Grant No.2017YFB0309800)National Natural Science Foundation of China(Grant No.51405445)
文摘Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center toolpath is of G1 continuity and that the grinding depth is controllable at the corners,a transition toolpath generation method based on a velocity-blending algorithm is proposed.Taking the grinding depth into consideration,the sharp-corner grinding process is planned,and a velocity-blending algorithm is introduced.With the constraints,such as traverse displacement and grinding depth,the sharp-corner transition toolpath is generated with a three-phase motion arrangement and with confirmations of the acceleration/deceleration positions.A piece of glass with three sharp corners is ground on a three-axis numerical-control glass grinding equipment.The experimental results demonstrate that the proposed algorithm can protect the sharp corners from breakage efficiently and achieve satisfactory shape accuracy.This research proposed a toolpath generation method based on a velocity-blending algorithm for the manufacturing of personalized glass products,which generates the transition toolpath as needed around a sharp corner in real time.
基金Supported by the National Natural Science Foundation of China(No.51575143)
文摘Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In order to solve these problems,a toolpath generation method of NC milling based on space-filling curve is proposed. First,T-spline surface is regarded as the modeling surface,the grid,which is based on the limited scallop-height,can be got in the parameter space,and the influence value of grid node is determined. Second,a box is defined and planned,and the tool paths are got preliminarily,which is based on minimal spanning tree; Finally,based on an improved chamfering algorithm,the whole tool paths are got. A simulation system is developed for computer simulation,and an experiment is carried out to verify the method. The results of simulation and experiment show that the method is effective and feasible,and length and time of the tool paths are reduced.