The COVID-19 has resulted in catastrophic situation and the deaths of millions of people all over the world.In this paper,the predictions of epidemiological propagation models,such as SIR and SEIR,are introduced to an...The COVID-19 has resulted in catastrophic situation and the deaths of millions of people all over the world.In this paper,the predictions of epidemiological propagation models,such as SIR and SEIR,are introduced to analyze the earlier COVID-19 propagation.The deep learning methods combined with transfer learning are familiar with classification-detection approaches based on chest X-ray and CT images are presented in detail.Besides,deep learning approaches have also been applied to lung ultrasound(LUS),which has been shown to be more sensitive than chest X-ray and CT images in detecting COVID-19.In the absence of a vaccine,the machine learning-related approaches are applied to analyze vaccine candidates in the realm of biology and medicine.The telehealth system played a major role in combating the pandemic from all aspects and reducing contact with patients during this period.Natural language processing-related methods are utilized to analyze tweets related to the COVID-19 epidemic on social media,and further analyze public sentiment and subject modeling,so as to arrange corresponding measures to appease public sentiment.In particular,this survey is to summarize and analyze the contributions made in various fields during the COVID-19 pandemic by considering both the contribution of deep learning in chest X-ray and CT images,as well as the application of the latest LUS during the COVID-19 pandemic.Telehealth and the importance of public sentiment analysis during a pandemic were also described in detail.展开更多
This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional te...This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.展开更多
基金This research is supported by National Natural Science Foundation of China(Nos.61902158,61806087).
文摘The COVID-19 has resulted in catastrophic situation and the deaths of millions of people all over the world.In this paper,the predictions of epidemiological propagation models,such as SIR and SEIR,are introduced to analyze the earlier COVID-19 propagation.The deep learning methods combined with transfer learning are familiar with classification-detection approaches based on chest X-ray and CT images are presented in detail.Besides,deep learning approaches have also been applied to lung ultrasound(LUS),which has been shown to be more sensitive than chest X-ray and CT images in detecting COVID-19.In the absence of a vaccine,the machine learning-related approaches are applied to analyze vaccine candidates in the realm of biology and medicine.The telehealth system played a major role in combating the pandemic from all aspects and reducing contact with patients during this period.Natural language processing-related methods are utilized to analyze tweets related to the COVID-19 epidemic on social media,and further analyze public sentiment and subject modeling,so as to arrange corresponding measures to appease public sentiment.In particular,this survey is to summarize and analyze the contributions made in various fields during the COVID-19 pandemic by considering both the contribution of deep learning in chest X-ray and CT images,as well as the application of the latest LUS during the COVID-19 pandemic.Telehealth and the importance of public sentiment analysis during a pandemic were also described in detail.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.61806087,61902158).
文摘This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques.The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells,namely,eosinophils,neutrophils,monocytes,and lymphocytes,known for their relationship with human body damage,inflammatory regions,and organ illnesses,in particular,and with the health of the immune system and other hazards,such as cardiovascular disease or infections,more in general.The results of the experiments show that the deep learning models can automatically extract features from the blood cell images and properly classify them with an accuracy of 98%,97%,and 89%,respectively,with regard to the training,verification,and testing of the corresponding datasets.