Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ...Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.展开更多
In this paper,improvement on man-computer interactive classification of clouds based on hispeetral satellite imagery has been synthesized by using the maximum likelihood automatic clustering(MLAC)and the unit feature ...In this paper,improvement on man-computer interactive classification of clouds based on hispeetral satellite imagery has been synthesized by using the maximum likelihood automatic clustering(MLAC)and the unit feature space classification(UFSC)approaches.The improved classification not only shortens the time of sample-training in UFSC method,but also eliminates the inevitable shortcomings of the MLAC method.(e.g.,1.sample selecting and training is confined only to one cloud image:2.the result of clustering is pretty sensitive to the selection of initial cluster center:3.the actual classification basically can not satisfy the supposition of normal distribution required by MLAC method;4.errors in classification are difficult to be modified.) Moreover,it makes full use of the professionals'accumulated knowledge and experience of visual cloud classifications and the cloud report of ground observation,having ensured both the higher accuracy of classification and its wide application as well.展开更多
文摘Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.
文摘In this paper,improvement on man-computer interactive classification of clouds based on hispeetral satellite imagery has been synthesized by using the maximum likelihood automatic clustering(MLAC)and the unit feature space classification(UFSC)approaches.The improved classification not only shortens the time of sample-training in UFSC method,but also eliminates the inevitable shortcomings of the MLAC method.(e.g.,1.sample selecting and training is confined only to one cloud image:2.the result of clustering is pretty sensitive to the selection of initial cluster center:3.the actual classification basically can not satisfy the supposition of normal distribution required by MLAC method;4.errors in classification are difficult to be modified.) Moreover,it makes full use of the professionals'accumulated knowledge and experience of visual cloud classifications and the cloud report of ground observation,having ensured both the higher accuracy of classification and its wide application as well.