期刊文献+
共找到2,256篇文章
< 1 2 113 >
每页显示 20 50 100
A classification tree for seismic evaluation of strip foundations on liquefiable soils
1
作者 Rohollah Taslimian Parisa Delalat 《Earthquake Engineering and Engineering Vibration》 2025年第3期675-695,共21页
The feasibility of constructing shallow foundations on saturated sands remains uncertain.Seismic design standards simply stipulate that geotechnical investigations for a shallow foundation on such soils shall be condu... The feasibility of constructing shallow foundations on saturated sands remains uncertain.Seismic design standards simply stipulate that geotechnical investigations for a shallow foundation on such soils shall be conducted to mitigate the effects of the liquefaction hazard.This study investigates the seismic behavior of strip foundations on typical two-layered soil profiles-a natural loose sand layer supported by a dense sand layer.Coupled nonlinear dynamic analyses have been conducted to calculate response parameters,including seismic settlement,the acceleration response on the ground surface,and excess pore pressure beneath strip foundations.A novel liquefaction potential index(LPI_(footing)),based on excess pore pressure ratios across a given region of soil mass beneath footings is introduced to classify liquefaction severity into three distinct levels:minor,moderate,and severe.To validate the proposed LPI_(footing),the foundation settlement is evaluated for the different liquefaction potential classes.A classification tree model has been grown to predict liquefaction susceptibility,utilizing various input variables,including earthquake intensity on the ground surface,foundation pressure,sand permeability,and top layer thickness.Moreover,a nonlinear regression function has been established to map LPI_(footing) in relation to these input predictors.The models have been constructed using a substantial dataset comprising 13,824 excess pore pressure ratio time histories.The performance of the developed models has been examined using various methods,including the 10-fold cross-validation method.The predictive capability of the tree also has been validated through existing experimental studies.The results indicate that the classification tree is not only interpretable but also highly predictive,with a testing accuracy level of 78.1%.The decision tree provides valuable insights for engineers assessing liquefaction potential beneath strip foundations. 展开更多
关键词 computational geomechanics liquefaction potential index shallow foundation finite element method machine learning decision tree classification regression
在线阅读 下载PDF
基于Logistic和CHAID的英国海上风电事故特征分析
2
作者 李杨 董雪 +4 位作者 杨霄 张潇 张扬冰 屈衍 孙海莹 《中国安全生产科学技术》 北大核心 2025年第9期198-205,共8页
为定量识别海上风电事故后果的影响因素,采用描述统计分析英国2014—2023年海上风电事故数据的时空分布与作业特征,并以是否造成人身伤害为因变量,以场地、区域和作业为候选自变量,构建二元Logistic回归和CHAID决策树模型,探究自变量对... 为定量识别海上风电事故后果的影响因素,采用描述统计分析英国2014—2023年海上风电事故数据的时空分布与作业特征,并以是否造成人身伤害为因变量,以场地、区域和作业为候选自变量,构建二元Logistic回归和CHAID决策树模型,探究自变量对事故后果的影响程度,识别高风险区域和作业种类以及高风险变量组合。研究结果表明:作业类型与事故后果关系最为密切;手动搬运为最易导致人身伤害的作业,船员转运船为最易发生人身伤害事故的区域;在风机机舱、风机外部基础及住宿船等区域开展的多种作业人身伤害风险显著高于其他区域。研究结果可为我国海上风电构建精细化、针对性的事故预防与风险管控机制提供参考。 展开更多
关键词 英国海上风电 事故后果 影响因素 描述统计 LOGISTIC回归 chaid
在线阅读 下载PDF
基于E-CHAID算法的肺癌患者住院费用影响因素与DRG分组研究
3
作者 丁志伟 周小平 王琦 《卫生软科学》 2025年第7期64-68,共5页
[目的]分析肺癌患者住院费用的关键影响因素,为完善DRG支付改革提供参考。[方法]选取北京市某三甲专科医院2023年1月-2024年12月6269例肺癌住院患者,通过单因素分析、多元线性回归筛选费用影响因素,运用E-CHAID算法进行DRG分组,以Kruska... [目的]分析肺癌患者住院费用的关键影响因素,为完善DRG支付改革提供参考。[方法]选取北京市某三甲专科医院2023年1月-2024年12月6269例肺癌住院患者,通过单因素分析、多元线性回归筛选费用影响因素,运用E-CHAID算法进行DRG分组,以Kruskal-Wallis H检验和变异系数(CV)评价分组效果,分析超额病例特征。[结果]单因素分析显示,住院费用与年龄、住院天数、手术数量、合并症数量、是否危重症等显著相关(P<0.001)。多元回归确定手术个数、住院天数为核心影响因素(P<0.001)。E-CHAID算法生成11个DRG分组,组间费用差异有统计学意义(P<0.001),组内CV均值0.34,分组合理性良好。超额病例110例(1.75%),集中于手术个数≤1、住院天数≥15天且合并症>5个的组别(35例),高权重组未出现超额,提示费用标准与资源消耗匹配度高。[结论]E-CHAID算法有效识别了肺癌患者住院费用影响因素并实现科学分组,可为DRG付费标准制定和医院精细化管理提供量化依据。 展开更多
关键词 DRG 肺癌 E-chaid决策树 住院费用 影响因素
暂未订购
基于CHAID算法的决策树的流动人员管控分析
4
作者 张又元 马海涛 《微型电脑应用》 2025年第4期8-11,16,共5页
人员流动对地区的治安有很大影响,因而需要对外来流动的人员进行统一管理,以维护社会治安。为了更好地管理,需要对管控人员进行甄别,以便于集中资源对这部分人员进行管理,实施管控。为了更好地实现这一点,基于CHAID(Chi-squared automat... 人员流动对地区的治安有很大影响,因而需要对外来流动的人员进行统一管理,以维护社会治安。为了更好地管理,需要对管控人员进行甄别,以便于集中资源对这部分人员进行管理,实施管控。为了更好地实现这一点,基于CHAID(Chi-squared automatic interaction detector)算法构建了决策树模型,以此来进行特征挖掘,分析梳理被列入重点管理人员特征,用于取代当前缺少必要特征标记相关人员的方式,加强对后期管控工作指导。 展开更多
关键词 人员流动 chaid 决策树 特征挖掘
在线阅读 下载PDF
CHAID-RF:基于CHAID决策树的集成学习方法
5
作者 聂斌 靳海科 +3 位作者 李欢 陈裕凤 张玉超 郑学鹏 《现代信息科技》 2024年第17期28-35,42,共9页
针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取... 针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取CART、CHAID、SVM、RF作为对比算法,以准确率、加权查准率、加权查全率、加权F值作为分类模型评价指标,以均方根误差作为回归模型评价指标,采用10个分类数据集和7个回归数据集进行验证。实验结果表明CHAID-RF可行有效。 展开更多
关键词 chaid 随机森林 chaid-RF 分类 回归
在线阅读 下载PDF
基于决策树E-CHAID算法的腰椎椎管狭窄症住院患者DRGs分组研究
6
作者 宗丽婕 潘源 +4 位作者 程立维 王辉宇 冯郡琪 廖军 王前强 《中国社会医学杂志》 2025年第2期207-210,共4页
目的了解腰椎椎管狭窄症住院患者的住院费用成本构成和影响因素,确定合理的成本分组方案。方法在广西壮族自治区某三级甲等综合医院信息系统中抽取出院时间在2018年7月-2023年6月的8458例主要诊断为腰椎椎管狭窄且主要手术为“前柱腰和... 目的了解腰椎椎管狭窄症住院患者的住院费用成本构成和影响因素,确定合理的成本分组方案。方法在广西壮族自治区某三级甲等综合医院信息系统中抽取出院时间在2018年7月-2023年6月的8458例主要诊断为腰椎椎管狭窄且主要手术为“前柱腰和腰骶部融合术,后路法”患者的相关资料,对比患者住院费用构成情况并对住院费用的影响因素进行多因素分析,利用E-CHAID算法构建DRGs分组方案,利用变异系数及Kruskal-Wallis H检验评价成本分组的合理性,制定各DRG分组参考费用。结果根据住院天数、是否有合并症和并发症、年龄三个分类节点将8458例患者分为6个DRG分组。Kruskal-Wallis H检验结果显示,各DRG分组的组间差异具有统计学意义(H=990.749,P<0.001),变异系数为0.25~0.32。结论基于决策树模型E-CHAID算法建立的腰椎椎管狭窄DRGs分组合理,可为医疗机构合理控费、提高医疗质量与效率提供依据,同时为该地区开展DRGs医保付费提供参考。 展开更多
关键词 腰椎椎管狭窄 决策树模型 住院费用 疾病诊断相关分组 穷举卡方自动交互检测方法
暂未订购
基于CHAID模型的白内障DRG优化分组研究
7
作者 张翔 苗春霞 +3 位作者 符金铭 白雪 刘颖 文娟 《医院管理论坛》 2025年第5期16-19,48,共5页
目的 分析徐州市某三甲医院白内障患者住院费用及影响因素,并基于CHAID算法进行白内障患者住院费用的DRG精细化分组,细化白内障患者住院费用的参考标准。方法 收集徐州市某三甲医院2020—2022年白内障住院患者的病案首页数据,采用Logis... 目的 分析徐州市某三甲医院白内障患者住院费用及影响因素,并基于CHAID算法进行白内障患者住院费用的DRG精细化分组,细化白内障患者住院费用的参考标准。方法 收集徐州市某三甲医院2020—2022年白内障住院患者的病案首页数据,采用Logistic回归分析影响住院费用的相关因素。以住院费用的影响因素为特征变量、住院费用作为目标变量,使用CHAID决策树模型建立白内障患者住院费用的DRG精细化分组。结果 Logistic回归分析结果显示,年龄、医疗付款方式、住院天数、是否存在并发症或合并症、治疗方式及转归是白内障患者住院费用的影响因素,使用CHAID算法在CHS-DRG的基础上建立了13个DRG精细化分组和收费标准。结论 基于CHAID算法进行白内障患者的DRG精细化分组科学合理,该分组可为医疗机构规范诊疗行为、控制资源消耗提供科学依据。 展开更多
关键词 疾病诊断相关分组 白内障 卡方自动交互检测 决策树模型
暂未订购
Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area 被引量:14
8
作者 NA Xiaodong ZHANG Shuqing +3 位作者 ZHANG Huaiqing LI Xiaofeng YU Huan LIU Chunyue 《Chinese Geographical Science》 SCIE CSCD 2009年第2期177-185,共9页
The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjia... The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjiang Plain, Heilongjiang Province, China. Semi-variograms and Z-test value were calculated to assess the separability of grey-level co-occurrence texture measures to maximize the difference between land cover types. The degree of spatial autocorrelation showed that window sizes of 3×3 pixels and 11×11 pixels were most appropriate for Landsat TM im- age texture calculations. The texture analysis showed that co-occurrence entropy, dissimilarity, and variance texture measures, derived from the Landsat TM spectrum bands and vegetation indices provided the most significant statistical differentiation between land cover types. Subsequently, a Classification and Regression Tree (CART) algorithm was applied to three different combinations of predictors: 1) TM imagery alone (TM-only); 2) TM imagery plus image texture (TM+TXT model); and 3) all predictors including TM imagery, image texture and additional ancillary GIS in- formation (TM+TXT+GIS model). Compared with traditional Maximum Likelihood Classification (MLC) supervised classification, three classification trees predictive models reduced the overall error rate significantly. Image texture measures and ancillary geographical variables depressed the speckle noise effectively and reduced classification error rate of marsh obviously. For classification trees model making use of all available predictors, omission error rate was 12.90% and commission error rate was 10.99% for marsh. The developed method is portable, relatively easy to im- plement and should be applicable in other settings and over larger extents. 展开更多
关键词 land cover classification classification trees Landsat TM ancillary geographical data MARSH
在线阅读 下载PDF
基于聚类分析和CHAID决策树算法的航班延误预测研究 被引量:6
9
作者 周覃 高强 +1 位作者 马农 王翠英 《武汉理工大学学报》 CAS 北大核心 2017年第11期32-40,共9页
近年来航班延误日益严重,严重影响民航发展。收集国内某大型航空公司全网络中近3年来的运行数据,利用数据挖掘技术对其分析处理。首先分析各个因素(时刻、月份、机型、机场)-平均延误时间的基本特征;在延误分析的基础上,针对机场-延误关... 近年来航班延误日益严重,严重影响民航发展。收集国内某大型航空公司全网络中近3年来的运行数据,利用数据挖掘技术对其分析处理。首先分析各个因素(时刻、月份、机型、机场)-平均延误时间的基本特征;在延误分析的基础上,针对机场-延误关系,应用K-means聚类算法对机场繁忙程度聚类分析,使机场属性值更加精确,提高预测时效性和精确度;接着加入延误因素属性,使用CHAID决策树算法对航空公司全网络近3年数据进行训练,并使用该训练模型分类预测近半年数据。实验结果表明,模型正确率接近80%。该方法可以对延误进行精确预测,协助航空公司对延误采取针对措施。 展开更多
关键词 航班延误 延误预测 chaid决策树 聚类分析
原文传递
冠心病患者痰热互结证CHAID决策树识别模式的研究 被引量:3
10
作者 史琦 陈建新 +1 位作者 赵慧辉 王伟 《世界中医药》 CAS 2018年第9期2095-2101,共7页
目的:建立冠心病不稳定性心绞痛患者临床常规检测指标对痰热互结证的识别模式。方法:选取2010年4月至2011年4月多中心收集的冠心病不稳定性心绞痛患者411例的基本资料、中医四诊信息及临床常规检测指标进行归一化处理后,采用CHAID决策... 目的:建立冠心病不稳定性心绞痛患者临床常规检测指标对痰热互结证的识别模式。方法:选取2010年4月至2011年4月多中心收集的冠心病不稳定性心绞痛患者411例的基本资料、中医四诊信息及临床常规检测指标进行归一化处理后,采用CHAID决策树方法从90个临床常规检测指标中自动提取痰热互结证的识别规律。对其中212例患者进行痰热互结证识别模式的外验证。结果:Cl离子、缩短分数、RDW-CV、血常规RBC、D-Ⅱ聚体、CK-MB、PTA和BUN共8个属性指标经筛选后进入决策树识别模型。该模型对411例患者的测试结果显示:敏感度为75.0%,特异度为86.9%,检验准确率为86.1%。外验证模型缺失RDW-CV,模型识别准确率为85.8%,敏感度为89.5%,特异度为85.5%。结论:临床常规检测指标经CHAID决策树方法筛选后,可以直观、清晰的进行冠心病不稳定性心绞痛患者痰热互结证的识别,自动归纳识别规律,在中医证型-生物学指标对应模式的数据挖掘中具备一定的优势。 展开更多
关键词 识别模式 chaid决策树 痰热互结证 冠心病 不稳定性心绞痛
暂未订购
基于CHAID决策树的个人收入分析 被引量:6
11
作者 黄奇 《数学理论与应用》 2009年第4期33-37,共5页
本文提出了应用CHAID决策树方法来分析国民个人收入。首先本文全面分析了CHAID决策树的构造过程,最后通过实证分析,从大量的个人信息数据集中,运用CHAID决策树构建出了一个分析模型,该模型提供了许多潜在的、有用的信息。
关键词 chaid决策树 个人收入
在线阅读 下载PDF
基于Bagging集成CHAID决策树算法的神东矿区煤灰熔融温度预测 被引量:1
12
作者 张挺 李寒旭 +1 位作者 张晔 陈和荆 《广州化工》 CAS 2022年第14期179-183,188,共6页
为了预防神东煤在气化过程中结渣的问题,以部分神东矿区煤的灰成分为自变量,灰熔点软化温度ST和流动温度FT为因变量,建立了Bagging集成CHAID决策树算法的灰熔点预测模型。结果表明:针对本文数据集,CHAID决策树最大树深度设置为5,决策树... 为了预防神东煤在气化过程中结渣的问题,以部分神东矿区煤的灰成分为自变量,灰熔点软化温度ST和流动温度FT为因变量,建立了Bagging集成CHAID决策树算法的灰熔点预测模型。结果表明:针对本文数据集,CHAID决策树最大树深度设置为5,决策树个数设置为10的模型预测效果最好;模型对小样本的FT预测精度略高于ST预测精度。因此,基于Bagging集成CHAID决策树预测煤灰熔融温度模型对气化炉的安全稳定运行提供重要指导。 展开更多
关键词 神东矿区煤 Bagging集成算法 chaid决策树算法 灰熔融温度 灰成分
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
13
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
基于决策树CHAID模型的切削钻机岩性识别预测 被引量:1
14
作者 马传贤 《露天采矿技术》 CAS 2016年第6期87-89,93,共4页
为研究某露天矿LWD-200B型切削钻机自动钻进参数与岩石性质关系,在现场通过钻机钻进参数记录仪对与岩性相关的钻进参数实时采集,通过对钻进过程中的岩屑的观察分析确定不同岩石的性质与位置,运用Clementine软件的决策树CHAID模型对数据... 为研究某露天矿LWD-200B型切削钻机自动钻进参数与岩石性质关系,在现场通过钻机钻进参数记录仪对与岩性相关的钻进参数实时采集,通过对钻进过程中的岩屑的观察分析确定不同岩石的性质与位置,运用Clementine软件的决策树CHAID模型对数据进行统计分析,对工作平台的岩层分布情况进行预测。 展开更多
关键词 切削钻机 决策树chaid 钻进参数 岩性识别
在线阅读 下载PDF
Swarm-based Cost-sensitive Decision Tree Using Optimized Rules for Imbalanced Data Classification
15
作者 Mehdi Mansouri Mohammad H.Nadimi-Shahraki Zahra Beheshti 《Journal of Bionic Engineering》 2025年第3期1434-1458,共25页
Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs... Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs others. Cost-sensitive learning is a strategy to solve this problem, and several cost-sensitive DT algorithms have been proposed to date. However, existing algorithms, which are heuristic, tried to greedily select either a better splitting point or feature node, leading to local optima for tree nodes and ignoring the cost of the whole tree. In addition, determination of the costs is difficult and often requires domain expertise. This study proposes a DT for imbalanced data, called Swarm-based Cost-sensitive DT (SCDT), using the cost-sensitive learning strategy and an enhanced swarm-based algorithm. The DT is encoded using a hybrid individual representation. A hybrid artificial bee colony approach is designed to optimize rules, considering specified costs in an F-Measure-based fitness function. Experimental results using datasets compared with state-of-the-art DT algorithms show that the SCDT method achieved the highest performance on most datasets. Moreover, SCDT also excels in other critical performance metrics, such as recall, precision, F1-score, and AUC, with notable results with average values of 83%, 87.3%, 85%, and 80.7%, respectively. 展开更多
关键词 Decision tree Cost-sensitive learning Artificial bee colony Swarm-based Imbalanced classification
在线阅读 下载PDF
Using Decision Tree Classification and Principal Component Analysis to Predict Ethnicity Based on Individual Characteristics: A Case Study of Assam and Bhutan Ethnicities
16
作者 Tianhui Zhang Xinyu Zhang +2 位作者 Xianchen Liu Zhen Guo Yuanhao Tian 《Journal of Software Engineering and Applications》 2024年第12期833-850,共18页
This study investigates the use of a decision tree classification model, combined with Principal Component Analysis (PCA), to distinguish between Assam and Bhutan ethnic groups based on specific anthropometric feature... This study investigates the use of a decision tree classification model, combined with Principal Component Analysis (PCA), to distinguish between Assam and Bhutan ethnic groups based on specific anthropometric features, including age, height, tail length, hair length, bang length, reach, and earlobe type. The dataset was reduced using PCA, which identified height, reach, and age as key features contributing to variance. However, while PCA effectively reduced dimensionality, it faced challenges in clearly distinguishing between the two ethnic groups, a limitation noted in previous research. In contrast, the decision tree model performed significantly better, establishing clear decision boundaries and achieving high classification accuracy. The decision tree consistently selected Height and Reach as the most important classifiers, a finding supported by existing studies on ethnic differences in Northeast India. The results highlight the strengths of combining PCA for dimensionality reduction with decision tree models for classification tasks. While PCA alone was insufficient for optimal class separation, its integration with decision trees improved both the model’s accuracy and interpretability. Future research could explore other machine learning models to enhance classification and examine a broader set of anthropometric features for more comprehensive ethnic group classification. 展开更多
关键词 Decision tree classification Principal Component Analysis Anthropometric Features Dimensionality Reduction Machine Learning in Anthropology
在线阅读 下载PDF
Multi-source and multi-temporal remote sensing image classification for flood disaster monitoring
17
作者 LI Zhu JIA Zhenyang +1 位作者 DONG Jing LIU Zhenghong 《Global Geology》 2025年第1期48-57,共10页
Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree c... Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree classification rules through multi-source and multi-temporal feature fusion, classified groundobjects before the disaster and extracted flood information in the disaster area based on optical imagesduring the disaster, so as to achieve rapid acquisition of the disaster situation of each disaster bearing object.In the case of Qianliang Lake, which suffered from flooding in 2020, the results show that decision treeclassification algorithms based on multi-temporal features can effectively integrate multi-temporal and multispectralinformation to overcome the shortcomings of single-temporal image classification and achieveground-truth object classification. 展开更多
关键词 MULTI-TEMPORAL decision tree classification flood disaster monitoring
在线阅读 下载PDF
Detection and Classification of Fig Plant Leaf Diseases Using Convolution Neural Network
18
作者 Rahim Khan Ihsan Rabbi +2 位作者 Umar Farooq Jawad Khan Fahad Alturise 《Computers, Materials & Continua》 2025年第7期827-842,共16页
Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accu... Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices. 展开更多
关键词 Fig tree leaf diseases deep learning convolutional neural network disease detection and classification agriculture technology
在线阅读 下载PDF
Clastic facies classification using machine learning-based algorithms: A case study from Rawat Basin, Sudan
19
作者 Anas Mohamed Abaker Babai Olugbenga Ajayi Ehinola +1 位作者 Omer.I.M.Fadul Abul Gebbayin Mohammed Abdalla Elsharif Ibrahim 《Energy Geoscience》 2025年第1期7-23,共17页
Machine learning techniques and a dataset of five wells from the Rawat oilfield in Sudan containing 93,925 samples per feature(seven well logs and one facies log) were used to classify four facies. Data preprocessing ... Machine learning techniques and a dataset of five wells from the Rawat oilfield in Sudan containing 93,925 samples per feature(seven well logs and one facies log) were used to classify four facies. Data preprocessing and preparation involve two processes: data cleaning and feature scaling. Several machine learning algorithms, including Linear Regression(LR), Decision Tree(DT), Support Vector Machine(SVM),Random Forest(RF), and Gradient Boosting(GB) for classification, were tested using different iterations and various combinations of features and parameters. The support vector radial kernel training model achieved an accuracy of 72.49% without grid search and 64.02% with grid search, while the blind-well test scores were 71.01% and 69.67%, respectively. The Decision Tree(DT) Hyperparameter Optimization model showed an accuracy of 64.15% for training and 67.45% for testing. In comparison, the Decision Tree coupled with grid search yielded better results, with a training score of 69.91% and a testing score of67.89%. The model's validation was carried out using the blind well validation approach, which achieved an accuracy of 69.81%. Three algorithms were used to generate the gradient-boosting model. During training, the Gradient Boosting classifier achieved an accuracy score of 71.57%, and during testing, it achieved 69.89%. The Grid Search model achieved a higher accuracy score of 72.14% during testing. The Extreme Gradient Boosting model had the lowest accuracy score, with only 66.13% for training and66.12% for testing. For validation, the Gradient Boosting(GB) classifier model achieved an accuracy score of 75.41% on the blind well test, while the Gradient Boosting with Grid Search achieved an accuracy score of 71.36%. The Enhanced Random Forest and Random Forest with Bagging algorithms were the most effective, with validation accuracies of 78.30% and 79.18%, respectively. However, the Random Forest and Random Forest with Grid Search models displayed significant variance between their training and testing scores, indicating the potential for overfitting. Random Forest(RF) and Gradient Boosting(GB) are highly effective for facies classification because they handle complex relationships and provide high predictive accuracy. The choice between the two depends on specific project requirements, including interpretability, computational resources, and data nature. 展开更多
关键词 Machine learning Facies classification Gradient Boosting(GB) Support Vector Classifier(SVC) Random Forest(RF) Decision tree(DT)
在线阅读 下载PDF
Text categorization based on fuzzy classification rules tree 被引量:2
20
作者 郭玉琴 袁方 刘海博 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期339-342,共4页
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree... To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency. 展开更多
关键词 text categorization fuzzy classification association rule classification rules tree fuzzy classification rules tree
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部