期刊文献+
共找到90,649篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Unsupervised Structural Attack and Defense for Graph Classification
1
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 Graph classification graph neural networks adversarial attack
在线阅读 下载PDF
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
2
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
3
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
4
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
5
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
6
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
非对称配钢SRC矩形柱偏压承载力计算方法
7
作者 吴琛 肖晓菲 +2 位作者 黄智彬 项洪 曾志攀 《福州大学学报(自然科学版)》 北大核心 2025年第4期439-446,共8页
为提出适用于非对称配钢型钢混凝土(SRC)矩形柱的承载力计算方法,采用轴向压电应力传感器监测约束混凝土内部轴向应力,分析型钢不对称性对混凝土应力分布的影响,探明非对称型钢约束混凝土的不均匀应力分布特征.研究表明:非对称配钢SRC... 为提出适用于非对称配钢型钢混凝土(SRC)矩形柱的承载力计算方法,采用轴向压电应力传感器监测约束混凝土内部轴向应力,分析型钢不对称性对混凝土应力分布的影响,探明非对称型钢约束混凝土的不均匀应力分布特征.研究表明:非对称配钢SRC矩形柱在受压过程中混凝土应力呈整体不对称、局部不均匀等强分布,且不均匀程度随着型钢不对称性增大而增强;混凝土极限压应变能较敏感反映非对称型钢对混凝土的不均匀约束作用,建议在计算非对称配钢SRC矩形柱承载力时取0.003 72;为便于结构设计应用,非对称配钢SRC柱偏压承载力计算将非对称型钢短腹板上部、下部面积分别简化为型钢中部腹板和长翼缘;所提方法的计算结果与试验、有限元分析结果吻合较好,验证了计算方法的准确性. 展开更多
关键词 非对称配钢 src矩形柱 偏心受压 正截面承载力 计算方法
在线阅读 下载PDF
微管蛋白及c-Src双靶点抑制剂的合成与抗肿瘤活性评价
8
作者 祁献芳 康悦 齐建国 《药学学报》 北大核心 2025年第6期1778-1790,共13页
微管类药物在转移、耐药的癌症治疗中发挥重要的作用。然而,临床上出现微管类药物耐药现象,需要研究者研发具有新作用模式、新机制的分子来克服耐药问题。多靶点药物分子策略是近年来针对复杂性疾病及耐药问题发展起来的一种药物分子设... 微管类药物在转移、耐药的癌症治疗中发挥重要的作用。然而,临床上出现微管类药物耐药现象,需要研究者研发具有新作用模式、新机制的分子来克服耐药问题。多靶点药物分子策略是近年来针对复杂性疾病及耐药问题发展起来的一种药物分子设计策略。本文在替巴尼布林基础上,结合课题组前期研究,开展微管蛋白(tubulin)及原癌基因酪氨酸蛋白激酶Src(proto-oncogene tyrosine protein kinase Src,c-Src)双靶点抑制剂研究。从增加饱和碳原子比率(fraction of sp^(3)-hybridized carbon atoms,Fsp^(3))角度出发,合成16个目标化合物,并通过核磁共振氢谱、碳谱和质谱对其结构进行表征;采用噻唑蓝(MTT)法评价了化合物对宫颈癌细胞(HeLa)和肝癌细胞(HepG2)两种细胞株的生长抑制活性,并通过免疫荧光和流式细胞术评价化合物22对微管和细胞周期的影响。结果显示2-咪唑啉酮不适合替代替巴尼布林中的吡啶结构,化合物22对HeLa和HepG2的半数生长抑制浓度分别为45和51 nmol·L^(-1),并且能够破坏微管结构,将细胞周期阻滞于G2/M期。化合物22可作为先导物开展进一步深入研究。 展开更多
关键词 2-咪唑啉酮 联芳基 微管抑制剂 C-src 抗肿瘤
原文传递
冠心舒通胶囊通过调控AHR/SRC/ERK通路减轻心肌梗死小鼠心肌细胞凋亡 被引量:1
9
作者 程龙 熊媛 +3 位作者 钱铭 杨慧 周玉皆 葛卫红 《药物评价研究》 北大核心 2025年第6期1460-1469,共10页
目的探讨冠心舒通胶囊(GXST)通过调控心肌细胞凋亡改善心肌梗死的分子机制。方法40只小鼠随机分为5组,每组8只,分别为对照组、模型组和GXST低、中、高剂量(0.5、1.0、2.0 g∙kg^(−1))组,连续6 d ig给药,对照组和模型组给予等体积0.5%CMC... 目的探讨冠心舒通胶囊(GXST)通过调控心肌细胞凋亡改善心肌梗死的分子机制。方法40只小鼠随机分为5组,每组8只,分别为对照组、模型组和GXST低、中、高剂量(0.5、1.0、2.0 g∙kg^(−1))组,连续6 d ig给药,对照组和模型组给予等体积0.5%CMC-Na溶液。除对照组外,其他组在第5、6天给小鼠sc异丙肾上腺素(ISO,150 mg∙kg^(−1))诱导心肌梗死模型。在最后1次sc ISO后16 h,将小鼠麻醉并处死。苏木精-伊红(HE)染色观察小鼠心肌组织病理变化,使用NIS-Elements BR版采图软件测量左心室相对壁厚(LV-RWT)和室间隔厚度(IVST);TUNEL染色观察心肌细胞凋亡;全自动生化分析仪及相关配套试剂检测血清心肌肌钙蛋白T(cTnT)、乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)、肌酸激酶(CK)、丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)水平;实时荧光定量PCR(qRT-PCR)检测心肌组织B淋巴细胞瘤-2(Bcl-2)、Bcl-2关联X蛋白(Bax)、Caspase-3 mRNA相对表达量;Western blotting检测Bcl-2、Bax、Caspase-3、cleaved Caspase-3、芳香烃受体(AHR)、肉瘤细胞来源的蛋白激酶(SRC)、p-SRC、细胞外调节蛋白激酶(ERK)、p-ERK蛋白表达。结果与模型组比较,GXST组心肌组织病理损伤明显减轻,LV-RWT和IVST显著降低(P<0.05、0.01);血清中CK、CK-MB、AST、cTnT、LDH、ALT水平显著下降(P<0.01);TUNEL阳性细胞比例明显减少(P<0.05);Caspase-3、Bax mRNA表达显著降低(P<0.05、0.01),Bcl-2 mRNA表达显著增加(P<0.05);Bcl-2、AHR、p-SRC、p-ERK蛋白表达显著增加(P<0.05、0.01),Bax、cleaved-Caspase-3蛋白表达显著降低(P<0.05、0.01)。结论GXST能够缓解心肌梗死小鼠心肌损伤,抑制心肌细胞凋亡,其机制与激活AHR/SRC/ERK信号通路相关。 展开更多
关键词 冠心舒通胶囊 心肌梗死 异丙肾上腺素 凋亡 AHR/src/ERK通路
原文传递
基于ASS1介导的Src/STAT3、MAPK/ERK级联反应探究参七虫草方对IPF模型大鼠成纤维细胞的影响
10
作者 纪文雯 何程 +3 位作者 朱恩惠 王三凤 黄丽娜 陈炜 《辽宁中医杂志》 北大核心 2025年第9期192-196,I0014,I0015,共7页
目的探究参七虫草方对博莱霉素(bleomycin,BLM)诱导的特发性肺纤维化(idiopathic pulmonary fibrosis,IPF)模型大鼠成纤维细胞的影响。方法除空白组外均采用气管内滴注BLM的方法体外分离培养模型成纤维细胞。CCK-8法检测肺成纤维细胞增... 目的探究参七虫草方对博莱霉素(bleomycin,BLM)诱导的特发性肺纤维化(idiopathic pulmonary fibrosis,IPF)模型大鼠成纤维细胞的影响。方法除空白组外均采用气管内滴注BLM的方法体外分离培养模型成纤维细胞。CCK-8法检测肺成纤维细胞增殖情况,选取最佳浓度及时间进行后续实验。实验分为6组:正常成纤维细胞+正常含药血清组(A组)、模型成纤维细胞+正常含药血清组(B组)、参七虫草方最佳含药血清组(C组)、精氨酸琥珀酸盐合成酶-1(arginine succinate synthetase-1,ASS1)抑制剂组(D组)、酪氨酸激酶(tyrosine kinase,Src)/信号转导和转化激活因子3(signal transducer and transformation activator 3,STAT3)阻断剂组(E组)、MAPK/细胞外调节蛋白激酶(extracellular regulatory protein kinase,ERK)通路抑制剂组(F组)。采用CCK-8法、细胞划痕实验分别检测细胞活力和迁移速率;RT-qPCR检测ASS1、Src、STAT3、双特异性蛋白激酶1/2(bispecific protein kinase 1/2,MEK1/2)、ERK1/2基因表达水平;Western Blot(WB)检测各组p-ERK、激活蛋白-1(activator-1,AP-1)、P-MEK、基质金属蛋白酶(matrix metalloproteinases,MMPs)、核蛋白因子-κB p65(NF-κB p65)蛋白表达水平。结果与A组比较,B组的细胞活力及细胞迁移速率增强和增快(P<0.05);与B组比较,其余干预组的细胞活力及细胞迁移速率减弱及降低(P<0.05)。RT-qPCR检测结果:B组与A组比较,ASS1、MEK1、MEK2、ERK1、ERK2、Src、STAT3基因表达水平升高(P<0.05)。与B组比较,其余干预组有关基因表达水平降低(P<0.05)。WB检测结果显示:B组与A组比较,p-ERK、P-MEK、MMP-2、MMP-9、NF-κB p65、AP-1蛋白表达水平升高(P<0.05)。与B组比较,其余干预组表达水平降低(P<0.05)。结论参七虫草方能够抑制ASS1介导的Src/STAT3、MAPK/ERK级联反应,下调MMP-2、MMP-9、AP-1、NF-κBp65蛋白表达,改善IPF病情进展。 展开更多
关键词 特发性肺纤维化 成纤维细胞 src/STAT3 MAPK/ERK MMP-2 MMP-9 AP-1 NF-κBp65
原文传递
六合一分离式SRC集束柱节点焊接质量管控技术
11
作者 阙荣 苏瑞 +2 位作者 苏铠 王乐 雷志强 《建筑技术开发》 2025年第7期140-142,共3页
本项目地上标志性塔楼由4座相互连通的体块组成,最高部分建筑高度达200m,建筑造型呈椭圆形,各体块均呈现中部宽、两头窄的体形。为满足项目异形曲面造型的转换需求,混凝土柱内插有圆管、H形、箱形、目字形等各种截面钢骨组合成六合一分... 本项目地上标志性塔楼由4座相互连通的体块组成,最高部分建筑高度达200m,建筑造型呈椭圆形,各体块均呈现中部宽、两头窄的体形。为满足项目异形曲面造型的转换需求,混凝土柱内插有圆管、H形、箱形、目字形等各种截面钢骨组合成六合一分离式SRC集束柱。钢骨材质高,板厚大,柱间距狭小,施焊空间受限为项目焊接质量管控带来挑战。 展开更多
关键词 分离式src集束柱节点 厚板焊接 残余应力控制
在线阅读 下载PDF
六味地黄丸通过FcγRⅡB/c-Src通路干预自噬防治阿尔茨海默病的分子机制
12
作者 侯文晓 司蕊豪 +4 位作者 刘羽茜 朱仲康 殷正达 王旭 赵丹玉 《世界科学技术-中医药现代化》 北大核心 2025年第3期724-738,共15页
目的 研究六味地黄丸对SAMP8小鼠及Aβ刺激的BV2细胞模型自噬水平的影响及其机制,探讨补肾填精法通过干预自噬防治阿尔茨海默病(Alzheimer’s disease,AD)的分子机制。方法 取10只7月龄雄性抗老化小鼠(SAMR1)作为正常组,40只7月龄雄性... 目的 研究六味地黄丸对SAMP8小鼠及Aβ刺激的BV2细胞模型自噬水平的影响及其机制,探讨补肾填精法通过干预自噬防治阿尔茨海默病(Alzheimer’s disease,AD)的分子机制。方法 取10只7月龄雄性抗老化小鼠(SAMR1)作为正常组,40只7月龄雄性快速老化小鼠(SAMP8)随机均分成模型组,六味地黄丸低、中、高剂量组,每组10只。六味地黄丸低、中、高剂量组分别给予0.59、1.18、2.36 g·kg-1六味地黄丸浓缩液,正常组和模型组给予等体积生理盐水,每日灌胃2次,连续灌胃给药4周。免疫荧光检测各组小鼠海马中Aβ表达水平;Western blot检测各组小鼠海马中FcγRⅡB、SHP-1、c-Src的表达水平;培养BV2细胞并构建Fcγ受体Ⅱ-b(FcγRⅡB)过表达载体;用5μmol·L-1Aβ1-42处理BV2细胞建立AD状态细胞模型,制备六味地黄丸含药血清。细胞分为NC组,Aβ1-42组,空白血清组,含药血清组,Vector组,FcγRⅡB OE组,含药血清+FcγRⅡB OE组;免疫荧光检测各组细胞中Aβ蛋白的表达水平;Western blot检测各组细胞中p62、LC3Ⅱ/Ⅰ、FcγRⅡB、SHP-1、c-Src的表达水平。结果 与正常组相比较,模型组小鼠海马Aβ、FcγRⅡB、SHP-1、c-Src表达水平明显增高(P<0.01),与模型组相比较,六味地黄丸低、中、高剂量组Aβ、FcγRⅡB、SHP-1、c-Src表达水平明显下降(P<0.01),且表现出明显的剂量依赖关系;与NC组相比较,Aβ1-42组细胞Aβ、p62、FcγRⅡB、SHP-1、c-Src蛋白表达显著升高(P<0.01),LC3Ⅱ/Ⅰ显著降低(P<0.01);与Aβ1-42组和空白血清组相比,含药血清组Aβ、p62、FcγRⅡB、SHP-1、c-Src蛋白表达明显降低(P<0.01),LC3Ⅱ/Ⅰ明显升高(P<0.01);与NC组和Vector组相比较,FcγRⅡB OE组Aβ表达升高,p62、FcγRⅡB、SHP-1、c-Src蛋白表达明显升高(P<0.01),LC3Ⅱ/Ⅰ明显降低(P<0.01);与含药血清组相比较,含药血清+FcγRⅡB OE组Aβ、p62、FcγRⅡB、SHP-1、c-Src蛋白表达明显升高(P<0.01),LC3Ⅱ/Ⅰ蛋白表达水平明显降低(P<0.01)。结论六味地黄丸通过抑制小胶质细胞FcγRⅡB/c-Src通路,提高自噬水平,改善AD。 展开更多
关键词 阿尔茨海默病 六味地黄丸 FcγRⅡB C-src 自噬
暂未订购
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
13
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
六味地黄丸提高GPNMB表达调控FcγRⅡB/c-Src通路防治阿尔茨海默病的作用机制
14
作者 侯文晓 刘羽茜 +4 位作者 苗嘉芮 朱仲康 尹烨 刘佳丽 赵丹玉 《中国中药杂志》 北大核心 2025年第21期6062-6071,共10页
研究六味地黄丸通过调控糖蛋白非转移性黑色素瘤蛋白B(GPNMB)的表达影响快速老化模型(SAMP8)小鼠Fcγ受体Ⅱ-b(FcγRⅡB)/c-Src酪氨酸激酶(c-Src)通路,探讨补肾填精法治疗阿尔茨海默病的作用机制。(1)六味地黄丸对SAMP8小鼠学习记忆能... 研究六味地黄丸通过调控糖蛋白非转移性黑色素瘤蛋白B(GPNMB)的表达影响快速老化模型(SAMP8)小鼠Fcγ受体Ⅱ-b(FcγRⅡB)/c-Src酪氨酸激酶(c-Src)通路,探讨补肾填精法治疗阿尔茨海默病的作用机制。(1)六味地黄丸对SAMP8小鼠学习记忆能力、海马β淀粉样蛋白(Aβ)、GPNMB和自噬功能的影响:取8只7月龄雄性抗老化模型(SAMR1)小鼠作为对照组,16只同月龄雄性SAMP8小鼠随机均分成模型组、六味地黄丸组;六味地黄丸组小鼠灌胃给予2.36 g·kg-1六味地黄丸浓缩液,对照组和模型组给予等体积生理盐水,每日2次,连续给药4周;通过Morris水迷宫实验检测各组小鼠学习记忆能力;酶联免疫吸附测定(ELISA)和免疫组化法检测各组小鼠海马中Aβ表达水平;免疫荧光和蛋白免疫印迹法检测各组小鼠海马GPNMB表达情况;蛋白免疫印迹法检测各组小鼠海马中泛素结合蛋白p62、微管相关蛋白轻链3(LC3)Ⅱ/LC3Ⅰ水平。(2)GPNMB对FcγRⅡB/c-Src通路的调控作用:取8只7月龄雄性SAMR1小鼠作为对照组,24只同月龄雄性SAMP8小鼠随机均分成模型组、LV-Vector组、LV-GPNMBOE组,其中LV-Vector组和LV-GPNMBOE组小鼠双侧海马分别注射LV-Vector和LV-GPNMBOE(每侧2μL),蛋白免疫印迹法检测各组小鼠海马p62、LC3Ⅱ/LC3Ⅰ、FcγRⅡB、Src同源区2蛋白酪氨酸磷酸酶1(SHP-1)、c-Src蛋白表达。(3)六味地黄丸提高GPNMB表达实现对FcγRⅡB/c-Src通路的调控:取32只7月龄雄性SAMP8小鼠随机均分成模型组、六味地黄丸组、六味地黄丸+LV-NC组、六味地黄丸+LV-shGPNMB组,其中六味地黄丸+LV-NC组和六味地黄丸+LV-shGPNMB组在药物治疗之前分别给予小鼠双侧海马注射LV-NC和LV-shGPNMB,蛋白免疫印迹法检测各组小鼠海马p62、LC3Ⅱ/LC3Ⅰ、FcγRⅡB、SHP-1、c-Src蛋白表达。结果显示,(1)与对照组相比,模型组小鼠逃避潜伏期显著增长,穿越目标象限时间和有效区停留时间显著减少,海马中Aβ、GPNMB、p62表达水平显著升高,LC3Ⅱ/LC3Ⅰ水平降低;与模型组相比,六味地黄丸组小鼠逃避潜伏期显著缩短,穿越目标象限时间和有效区停留时间显著增加,海马中Aβ水平显著下降,GPNMB表达水平显著升高,p62表达水平显著降低,LC3Ⅱ/LC3Ⅰ水平显著升高。(2)与对照组相比,模型组小鼠海马p62、FcγRⅡB、SHP-1、c-Src蛋白表达显著升高,LC3Ⅱ/LC3Ⅰ水平降低;与模型组相比,LV-GPNMBOE组p62、FcγRⅡB、SHP-1、c-Src蛋白表达显著降低,LC3Ⅱ/LC3Ⅰ水平显著升高。(3)与模型组相比,六味地黄丸组小鼠海马p62、FcγRⅡB、SHP-1、c-Src蛋白表达显著降低,LC3Ⅱ/LC3Ⅰ水平显著升高;与六味地黄丸组相比,六味地黄丸+LV-shGPNMB组p62、FcγRⅡB、SHP-1、c-Src蛋白表达显著升高,LC3Ⅱ/LC3Ⅰ水平显著降低。以上结果显示,六味地黄丸可以通过上调GPNMB表达抑制FcγRⅡB/c-Src通路,从而上调自噬水平,提高神经保护能力,改善阿尔茨海默病。 展开更多
关键词 阿尔茨海默病 六味地黄丸 GPNMB FcγRⅡB C-src
原文传递
金樱子通过调控Src-AKT1轴抑制肺动脉高压平滑肌增殖
15
作者 杨子为 吕畅 +4 位作者 董柱 计书磊 毕生辉 张雪花 王晓武 《南方医科大学学报》 北大核心 2025年第9期1889-1902,共14页
目的探讨传统中药金樱子(RLM)治疗肺动脉高压(PAH)的协同机制,通过网络药理学预测其活性成分与作用靶点,并通过体内外实验验证其抗增殖效应降低细胞内钙离子浓度作用。方法网络药理学分析:筛选金樱子活性成分及PAH疾病靶点,构建“成分-... 目的探讨传统中药金樱子(RLM)治疗肺动脉高压(PAH)的协同机制,通过网络药理学预测其活性成分与作用靶点,并通过体内外实验验证其抗增殖效应降低细胞内钙离子浓度作用。方法网络药理学分析:筛选金樱子活性成分及PAH疾病靶点,构建“成分-靶点-疾病”互作网络,进行基因富集分析与分子对接验证。体外实验:设置对照组、缺氧组+溶剂对照、缺氧+金樱子(100 mg/mL)、缺氧+金樱子(200 mg/mL)、缺氧+金樱子(300 mg/mL),通过Western blotting和免疫荧光检测细胞增殖。动物实验:将大鼠随机分为5组:阴性对照组、野百合碱(MCT)+溶剂对照、野百合碱+金樱子(100 mg/mL),MCT+金樱子(200 mg/mL)、MCT+金樱子(300 mg/mL)。HE染色、免疫荧光染色观察肺血管形态学变化。结果网络分析筛选出7种核心活性成分(如β-谷甾醇、山奈酚)及39个关键靶点,分子对接显示Src为高亲和力靶点。KEGG富集分析显示,差异基因显著富集于钙信号通路和PI3K-AKT通路。体外实验表明,与对照组相比,Hypo组PCNA上调(P<0.001)。金樱子显著抑制PASMCs增殖(PCNA表达下调)。Western blotting实验证实金樱子可以抑制Src和AKT1的磷酸化。动物实验证实,金樱子治疗组肺动脉平均压(P<0.001)和右心室肥厚指数降低,右心室射血功能改善,肺血管壁增厚和纤维化减轻。结论金樱子通过调控Src-AKT1轴,发挥抗平滑肌增殖的作用,为肺动脉高压的治疗提供了新型天然药物候选策略。 展开更多
关键词 肺动脉高压 平滑肌细胞增殖 AKT1 src 网络药理学
暂未订购
Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network 被引量:1
16
作者 Yeqi Fei Zhenye Li +2 位作者 Tingting Zhu Zengtao Chen Chao Ni 《Digital Communications and Networks》 2025年第2期308-316,共9页
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile... The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing. 展开更多
关键词 Seed cotton Film impurity Hyperspectral imaging Band optimization classification
在线阅读 下载PDF
Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction
17
作者 A.Robert Singh Suganya Athisayamani +1 位作者 Gyanendra Prasad Joshi Bhanu Shrestha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期299-327,共29页
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar... Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction. 展开更多
关键词 SPECT-MPI CAD MSDC DENOISING attenuation correction classification
在线阅读 下载PDF
Automated ECG arrhythmia classification using hybrid CNN-SVM architectures 被引量:1
18
作者 Amine Ben Slama Yessine Amri +1 位作者 Ahmed Fnaiech Hanene Sahli 《Journal of Electronic Science and Technology》 2025年第3期43-55,共13页
Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advanc... Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advancements in machine learning,achieving both high accuracy and low computational cost for arrhythmia classification remains a critical issue.Computer-aided diagnosis systems can play a key role in early detection,reducing mortality rates associated with cardiac disorders.This study proposes a fully automated approach for ECG arrhythmia classification using deep learning and machine learning techniques to improve diagnostic accuracy while minimizing processing time.The methodology consists of three stages:1)preprocessing,where ECG signals undergo noise reduction and feature extraction;2)feature Identification,where deep convolutional neural network(CNN)blocks,combined with data augmentation and transfer learning,extract key parameters;3)classification,where a hybrid CNN-SVM model is employed for arrhythmia recognition.CNN-extracted features were fed into a binary support vector machine(SVM)classifier,and model performance was assessed using five-fold cross-validation.Experimental findings demonstrated that the CNN2 model achieved 85.52%accuracy,while the hybrid CNN2-SVM approach significantly improved accuracy to 97.33%,outperforming conventional methods.This model enhances classification efficiency while reducing computational complexity.The proposed approach bridges the gap between accuracy and processing speed in ECG arrhythmia classification,offering a promising solution for real-time clinical applications.Its superior performance compared to nonlinear classifiers highlights its potential for improving automated cardiac diagnosis. 展开更多
关键词 ARRHYTHMIA classification Convolutional neural networks ECG signals Support vector machine
暂未订购
Various classification methods for diabetes mellitus in the management of blood glucose control 被引量:1
19
作者 Qing Jiang Yun Hu Jian-Hua Ma 《World Journal of Diabetes》 2025年第5期1-7,共7页
In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in spec... In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes. 展开更多
关键词 Diabetes classification Glycaemic control Personalised treatment Soft clustering Precision medicine
暂未订购
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
20
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS classification AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部