BACKGROUND Musical hallucinations(MH)involve the false perception of music in the absence of external stimuli which links with different etiologies.The pathomechanisms of MH encompass various conditions.The etiologica...BACKGROUND Musical hallucinations(MH)involve the false perception of music in the absence of external stimuli which links with different etiologies.The pathomechanisms of MH encompass various conditions.The etiological classification of MH is of particular importance and offers valuable insights to understand MH,and further to develop the effective treatment of MH.Over the recent decades,more MH cases have been reported,revealing newly identified medical and psychiatric causes of MH.Functional imaging studies reveal that MH activates a wide array of brain regions.An up-to-date analysis on MH,especially on MH comorbid psychiatric conditions is warranted.AIM To propose a new classification of MH;to study the age and gender differences of MH in mental disorders;and neuropathology of MH.METHODS Literatures searches were conducted using keywords such as“music hallucination,”“music hallucination and mental illness,”“music hallucination and gender difference,”and“music hallucination and psychiatric disease”in the databases of PubMed,Google Scholar,and Web of Science.MH cases were collected and categorized based on their etiologies.The t-test and ANOVA were employed(P<0.05)to compare the age differences of MH different etiological groups.Function neuroimaging studies of neural networks regulating MH and their possible molecular mechanisms were discussed.RESULTS Among the 357 yielded publications,294 MH cases were collected.The average age of MH cases was 67.9 years,with a predominance of females(66.8%females vs 33.2%males).MH was classified into eight groups based on their etiological mechanisms.Statistical analysis of MH cases indicates varying associations with psychiatric diagnoses.CONCLUSION We carried out a more comprehensive review of MH studies.For the first time according to our knowledge,we demonstrated the psychiatric conditions linked and/or associated with MH from statistical,biological and molecular point of view.展开更多
叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal clas...叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。展开更多
The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster ...The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster prevention.Currently,this work is primarily performed by skilled technicians,which results in severe workloads and inefficiency.In this paper,CNN-based transfer learning combined with computer vision technology was used to achieve automatic recognition and classification of multichannel microseismic signal waveforms.First,data collected by MMS was generated into 6-channel original waveforms based on events.After that,sample data sets of microseismic events,blasts,drillings,and noises were established through manual identification.These datasets were split into training sets and test sets according to a certain proportion,and transfer learning was performed on AlexNet,GoogLeNet,and ResNet50 pre-training network models,respectively.After training and tuning,optimal models were retained and compared with support vector machine classification.Results show that transfer learning models perform well on different test sets.Overall,GoogLeNet performed best,with a recognition accuracy of 99.8%.Finally,the possible effects of the number of training sets and the imbalance of different types of sample data on the accuracy and effectiveness of classification models were discussed.展开更多
Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to a...Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to address this issue and present a fast automatic seismic waveform classification method to pick densely-sampled FBs directly from common-shot gathers with sparsely distributed traces.Through feeding a large number of representative shot gathers with missing traces and the corresponding binary labels segmented by manually interpreted fully-sampled FBs,we can obtain a welltrained Seg Net model.When any unseen gather including the one with irregular trace spacing is inputted,the Seg Net can output the probability distribution of different categories for waveform classification.Then FBs can be picked by locating the boundaries between one class on post-FBs data and the other on pre-FBs background.Two land datasets with each over 2000 shots are adopted to illustrate that one well-trained 25-layer Seg Net can favorably classify waveform and further pick fully-sampled FBs verified by the manually-derived ones,even when the proportion of randomly missing traces reaches50%,21 traces are missing consecutively,or traces are missing regularly.展开更多
It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone h...It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone huge changes.As the number ofmusic products increases daily and themusic genres are extremely rich,storing,classifying,and searching these works manually becomes difficult,if not impossible.Automatic classification ofmusical genres will contribute to making this possible.The research presented in this paper proposes an appropriate deep learning model along with an effective data augmentation method to achieve high classification accuracy for music genre classification using Small Free Music Archive(FMA)data set.For Small FMA,it is more efficient to augment the data by generating an echo rather than pitch shifting.The research results show that the DenseNet121 model and data augmentation methods,such as noise addition and echo generation,have a classification accuracy of 98.97%for the Small FMA data set,while this data set lowered the sampling frequency to 16000 Hz.The classification accuracy of this study outperforms that of the majority of the previous results on the same Small FMA data set.展开更多
A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8 kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is p...A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8 kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is proposed. Each input frame is classified into one of 4 phonetic classes. Non-speech frames are represented with Bark-band noise model. The extracted CWs become rapidly evolving waveforms (REWs) or slowly evolving waveforms (SEWs) in the cases of unvoiced or stationary voiced frames respectively, while mixed voiced frames use the same CW decomposition as that in the conventional CWI. Experimental results show that the proposed codec can eliminate most buzzy and noisy artifacts existing in the fixed-bit-rate characteristic waveform interpolation (FBR-CWI) speech codec, the average bit rate can be much lower, and its reconstructed speech quality is much better than FS 1 016 CELP at 4.8 kbit/s and similar to G. 723.1 ACELP at 5.3 kbit/s.展开更多
由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进...由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。展开更多
针对相关滤波等经典频域分析方法提取动不平衡信号时,近频干扰抑制能力及参数估计精度严重依赖数据长度的问题,提出了一种基于残差MUSIC(multiple signal classification)谱分析的正弦参数估计方法,以残差MISIC谱中给定频率点的幅度值...针对相关滤波等经典频域分析方法提取动不平衡信号时,近频干扰抑制能力及参数估计精度严重依赖数据长度的问题,提出了一种基于残差MUSIC(multiple signal classification)谱分析的正弦参数估计方法,以残差MISIC谱中给定频率点的幅度值为观测变量判定参数拟合效果,提取该频率成分的幅值和相位。实验表明此方法与相关滤波法相比具有更高的频率分辨率,对抑制近频干扰的能力更出色,较好地解决了提高动不平衡信号提取精度与提高动平衡试验效率难于两全的问题。展开更多
近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱...近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.展开更多
文摘BACKGROUND Musical hallucinations(MH)involve the false perception of music in the absence of external stimuli which links with different etiologies.The pathomechanisms of MH encompass various conditions.The etiological classification of MH is of particular importance and offers valuable insights to understand MH,and further to develop the effective treatment of MH.Over the recent decades,more MH cases have been reported,revealing newly identified medical and psychiatric causes of MH.Functional imaging studies reveal that MH activates a wide array of brain regions.An up-to-date analysis on MH,especially on MH comorbid psychiatric conditions is warranted.AIM To propose a new classification of MH;to study the age and gender differences of MH in mental disorders;and neuropathology of MH.METHODS Literatures searches were conducted using keywords such as“music hallucination,”“music hallucination and mental illness,”“music hallucination and gender difference,”and“music hallucination and psychiatric disease”in the databases of PubMed,Google Scholar,and Web of Science.MH cases were collected and categorized based on their etiologies.The t-test and ANOVA were employed(P<0.05)to compare the age differences of MH different etiological groups.Function neuroimaging studies of neural networks regulating MH and their possible molecular mechanisms were discussed.RESULTS Among the 357 yielded publications,294 MH cases were collected.The average age of MH cases was 67.9 years,with a predominance of females(66.8%females vs 33.2%males).MH was classified into eight groups based on their etiological mechanisms.Statistical analysis of MH cases indicates varying associations with psychiatric diagnoses.CONCLUSION We carried out a more comprehensive review of MH studies.For the first time according to our knowledge,we demonstrated the psychiatric conditions linked and/or associated with MH from statistical,biological and molecular point of view.
文摘叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。
基金the National Key R&D Program of China(No.2021YFC2900500).
文摘The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster prevention.Currently,this work is primarily performed by skilled technicians,which results in severe workloads and inefficiency.In this paper,CNN-based transfer learning combined with computer vision technology was used to achieve automatic recognition and classification of multichannel microseismic signal waveforms.First,data collected by MMS was generated into 6-channel original waveforms based on events.After that,sample data sets of microseismic events,blasts,drillings,and noises were established through manual identification.These datasets were split into training sets and test sets according to a certain proportion,and transfer learning was performed on AlexNet,GoogLeNet,and ResNet50 pre-training network models,respectively.After training and tuning,optimal models were retained and compared with support vector machine classification.Results show that transfer learning models perform well on different test sets.Overall,GoogLeNet performed best,with a recognition accuracy of 99.8%.Finally,the possible effects of the number of training sets and the imbalance of different types of sample data on the accuracy and effectiveness of classification models were discussed.
基金financially supported by the National Key R&D Program of China(2018YFA0702504)the Fundamental Research Funds for the Central Universities(2462019QNXZ03)+1 种基金the National Natural Science Foundation of China(42174152 and 41974140)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX 2020-03)。
文摘Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to address this issue and present a fast automatic seismic waveform classification method to pick densely-sampled FBs directly from common-shot gathers with sparsely distributed traces.Through feeding a large number of representative shot gathers with missing traces and the corresponding binary labels segmented by manually interpreted fully-sampled FBs,we can obtain a welltrained Seg Net model.When any unseen gather including the one with irregular trace spacing is inputted,the Seg Net can output the probability distribution of different categories for waveform classification.Then FBs can be picked by locating the boundaries between one class on post-FBs data and the other on pre-FBs background.Two land datasets with each over 2000 shots are adopted to illustrate that one well-trained 25-layer Seg Net can favorably classify waveform and further pick fully-sampled FBs verified by the manually-derived ones,even when the proportion of randomly missing traces reaches50%,21 traces are missing consecutively,or traces are missing regularly.
基金The authors received the research fun T2022-CN-006 for this study.
文摘It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone huge changes.As the number ofmusic products increases daily and themusic genres are extremely rich,storing,classifying,and searching these works manually becomes difficult,if not impossible.Automatic classification ofmusical genres will contribute to making this possible.The research presented in this paper proposes an appropriate deep learning model along with an effective data augmentation method to achieve high classification accuracy for music genre classification using Small Free Music Archive(FMA)data set.For Small FMA,it is more efficient to augment the data by generating an echo rather than pitch shifting.The research results show that the DenseNet121 model and data augmentation methods,such as noise addition and echo generation,have a classification accuracy of 98.97%for the Small FMA data set,while this data set lowered the sampling frequency to 16000 Hz.The classification accuracy of this study outperforms that of the majority of the previous results on the same Small FMA data set.
文摘A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8 kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is proposed. Each input frame is classified into one of 4 phonetic classes. Non-speech frames are represented with Bark-band noise model. The extracted CWs become rapidly evolving waveforms (REWs) or slowly evolving waveforms (SEWs) in the cases of unvoiced or stationary voiced frames respectively, while mixed voiced frames use the same CW decomposition as that in the conventional CWI. Experimental results show that the proposed codec can eliminate most buzzy and noisy artifacts existing in the fixed-bit-rate characteristic waveform interpolation (FBR-CWI) speech codec, the average bit rate can be much lower, and its reconstructed speech quality is much better than FS 1 016 CELP at 4.8 kbit/s and similar to G. 723.1 ACELP at 5.3 kbit/s.
文摘由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。
文摘针对相关滤波等经典频域分析方法提取动不平衡信号时,近频干扰抑制能力及参数估计精度严重依赖数据长度的问题,提出了一种基于残差MUSIC(multiple signal classification)谱分析的正弦参数估计方法,以残差MISIC谱中给定频率点的幅度值为观测变量判定参数拟合效果,提取该频率成分的幅值和相位。实验表明此方法与相关滤波法相比具有更高的频率分辨率,对抑制近频干扰的能力更出色,较好地解决了提高动不平衡信号提取精度与提高动平衡试验效率难于两全的问题。
文摘近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系.