期刊文献+
共找到91,657篇文章
< 1 2 250 >
每页显示 20 50 100
Taxonomic classification of 80 near-Earth asteroids
1
作者 Fan Mo Bin Li +9 位作者 HaiBin Zhao Jian Chen Yan Jin MengHui Tang Igor Molotov A.M.Abdelaziz A.Takey S.K.Tealib Ahmed.Shokry JianYang Li 《Earth and Planetary Physics》 2026年第1期196-204,共9页
Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physica... Near-Earth objects are important not only in studying the early formation of the Solar System,but also because they pose a serious hazard to humanity when they make close approaches to the Earth.Study of their physical properties can provide useful information on their origin,evolution,and hazard to human beings.However,it remains challenging to investigate small,newly discovered,near-Earth objects because of our limited observational window.This investigation seeks to determine the visible colors of near-Earth asteroids(NEAs),perform an initial taxonomic classification based on visible colors and analyze possible correlations between the distribution of taxonomic classification and asteroid size or orbital parameters.Observations were performed in the broadband BVRI Johnson−Cousins photometric system,applied to images from the Yaoan High Precision Telescope and the 1.88 m telescope at the Kottamia Astronomical Observatory.We present new photometric observations of 84 near-Earth asteroids,and classify 80 of them taxonomically,based on their photometric colors.We find that nearly half(46.3%)of the objects in our sample can be classified as S-complex,26.3%as C-complex,6%as D-complex,and 15.0%as X-complex;the remaining belong to the A-or V-types.Additionally,we identify three P-type NEAs in our sample,according to the Tholen scheme.The fractional abundances of the C/X-complex members with absolute magnitude H≥17.0 were more than twice as large as those with H<17.0.However,the fractions of C-and S-complex members with diameters≤1 km and>1 km are nearly equal,while X-complex members tend to have sub-kilometer diameters.In our sample,the C/D-complex objects are predominant among those with a Jovian Tisserand parameter of T_(J)<3.1.These bodies could have a cometary origin.C-and S-complex members account for a considerable proportion of the asteroids that are potentially hazardous. 展开更多
关键词 near-Earth asteroids optical telescope photometric observation taxonomic classification
在线阅读 下载PDF
A Novel Unsupervised Structural Attack and Defense for Graph Classification
2
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 Graph classification graph neural networks adversarial attack
在线阅读 下载PDF
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
3
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends
4
作者 Ameer Hamza Robertas Damaševicius 《Computers, Materials & Continua》 2026年第1期132-172,共41页
This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 20... This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities,focusing on recent trends from 2022 to 2025.The primary objective is to evaluate methodological advancements,model performance,dataset usage,and existing challenges in developing clinically robust AI systems.We included peer-reviewed journal articles and highimpact conference papers published between 2022 and 2025,written in English,that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification.Excluded were non-open-access publications,books,and non-English articles.A structured search was conducted across Scopus,Google Scholar,Wiley,and Taylor&Francis,with the last search performed in August 2025.Risk of bias was not formally quantified but considered during full-text screening based on dataset diversity,validation methods,and availability of performance metrics.We used narrative synthesis and tabular benchmarking to compare performance metrics(e.g.,accuracy,Dice score)across model types(CNN,Transformer,Hybrid),imaging modalities,and datasets.A total of 49 studies were included(43 journal articles and 6 conference papers).These studies spanned over 9 public datasets(e.g.,BraTS,Figshare,REMBRANDT,MOLAB)and utilized a range of imaging modalities,predominantly MRI.Hybrid models,especially ResViT and UNetFormer,consistently achieved high performance,with classification accuracy exceeding 98%and segmentation Dice scores above 0.90 across multiple studies.Transformers and hybrid architectures showed increasing adoption post2023.Many studies lacked external validation and were evaluated only on a few benchmark datasets,raising concerns about generalizability and dataset bias.Few studies addressed clinical interpretability or uncertainty quantification.Despite promising results,particularly for hybrid deep learning models,widespread clinical adoption remains limited due to lack of validation,interpretability concerns,and real-world deployment barriers. 展开更多
关键词 Brain tumor segmentation brain tumor classification deep learning vision transformers hybrid models
在线阅读 下载PDF
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
5
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
6
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
市域铁路CTCS密钥管理测试系统研究
7
作者 王璐 唐德璋 王旭煜 《铁道通信信号》 2026年第1期93-100,共8页
我国列车运行控制系统密钥管理采用离线方式进行密钥分发,存在密钥丢失和泄露的风险。上海市域铁路提出一套完整、统一的密钥管理系统,对密钥信息进行全生命周期管理,需要一套可靠、高效的测试工具,对密钥管理系统的功能、性能等指标进... 我国列车运行控制系统密钥管理采用离线方式进行密钥分发,存在密钥丢失和泄露的风险。上海市域铁路提出一套完整、统一的密钥管理系统,对密钥信息进行全生命周期管理,需要一套可靠、高效的测试工具,对密钥管理系统的功能、性能等指标进行验证。首先介绍市域铁路CTCS密钥管理系统的总体架构和设备组成;然后提出CTCS密钥管理测试系统架构,对组成测试系统的真实设备、测试控制系统和测试支撑系统等进行详细阐述;最后,针对功能测试、性能测试、接口测试和防伪装攻击测试等关键项目,设计相应的测试案例。测试系统为市域铁路CTCS密钥管理系统提供了验证和测试手段,确保密钥管理系统能够按照设计规格正常工作。 展开更多
关键词 市域铁路 中国列车运行控制系统 密钥管理系统 密钥管理中心 证书管理中心 测试验证
在线阅读 下载PDF
站界口CTC车次跟踪异常问题研究
8
作者 程忆佳 周李昭轩 《铁道通信信号》 2026年第1期101-105,共5页
在铁路信号设计中,若自动站间闭塞区间由多轨道区段贯通,且相邻站采用不同联锁设备轨道区段信息处理方式时,易引发调度集中(CTC)车次号跟踪异常,影响调度系统的正常使用。通过剖析车次号跟踪原理、轨道电路信息采集机制和软件处理逻辑等... 在铁路信号设计中,若自动站间闭塞区间由多轨道区段贯通,且相邻站采用不同联锁设备轨道区段信息处理方式时,易引发调度集中(CTC)车次号跟踪异常,影响调度系统的正常使用。通过剖析车次号跟踪原理、轨道电路信息采集机制和软件处理逻辑等,确认CTC车次号跟踪异常原因,并提出2种解决方案:一是两站联锁设备独立采集、处理各轨道电路条件;二是两站联锁设备合并或独立采集各轨道电路条件后,由联锁软件将相应轨道区段整合成单个轨道区段进行逻辑处理。经工程验证,上述方案均能解决CTC车次号跟踪异常问题,需结合工程实际应用需求选择,可为其他类似项目设计提供参考。 展开更多
关键词 轨道电路 联锁采集 调度集中 车次号 红光带
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
9
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
基于CRNN-CTC的智能判题器设计 被引量:1
10
作者 黄巧洁 刘思思 +1 位作者 黎颖 刘伟俭 《自动化技术与应用》 2025年第4期61-65,共5页
为了有效提升线上辅助教学效率,建立微信小程序判题系统实现随时随地智能判题。基于卷积循环神经网络(convolutional recurrent neural network,CRNN)和联结主义时序分类器(connectionist temporal classification,CTC),设计部署于云服... 为了有效提升线上辅助教学效率,建立微信小程序判题系统实现随时随地智能判题。基于卷积循环神经网络(convolutional recurrent neural network,CRNN)和联结主义时序分类器(connectionist temporal classification,CTC),设计部署于云服务器的智能判题器,通过调用微信小程序,实现待识别图片判题功能。实验结果表明,该系统能实现十以内加减法的自动判题,准确率达99.5%以上。采用云技术的自动判题系统突破了传统主观题判题模式,能更好地调动学生的学习积极性,也能大大减少教师的重复判题工作量,实现了教与学的双赢发展。 展开更多
关键词 CRNN-ctc 智能判题器 微信小程序 二值化
在线阅读 下载PDF
基于CTC数据的高铁区间可达最大通过能力计算模型
11
作者 施莉娟 司继盛 +2 位作者 费振豪 韩安平 王卫权 《铁道通信信号》 2025年第10期31-38,共8页
在繁忙高铁线路运营中,突发事件干扰可能导致严重的列车延误,如何通过优化区间行车间隔和列车运行速度快速恢复行车秩序,是亟待解决的问题。基于调度集中(CTC)系统的历史行车数据,提出区间可达最大通过能力概念和计算模型。通过数据挖... 在繁忙高铁线路运营中,突发事件干扰可能导致严重的列车延误,如何通过优化区间行车间隔和列车运行速度快速恢复行车秩序,是亟待解决的问题。基于调度集中(CTC)系统的历史行车数据,提出区间可达最大通过能力概念和计算模型。通过数据挖掘发现,列车停站方案对列车追踪间隔时间和区间运行时间的影响极为关键。采用按停站次数对列车进行分类的方法,计算出每种类型列车的区间最高平均运行速度和不同列车间隔类型下的最小列车追踪间隔时间,并以此为双重约束,压缩运行图获得可达最大通过能力。基于京沪线徐州东至南京南段下行线六站五区间的CTC历史数据,使用本计算模型计算出各区间通过能力。结果表明,各区间已使用通过能力约为可达最大通过能力的46%~60%,且可达最大通过能力较仅基于最小列车追踪间隔时间压缩的实际通过能力高出4%~8.5%。本研究可为列车延误后快速恢复行车秩序的调度策略优化提供参考。 展开更多
关键词 高速铁路 调度集中系统 区间通过能力 可达最大通过能力 最小列车追踪间隔 最高平均运行速度
在线阅读 下载PDF
5G-R承载CTCS-3级列控数据传输研究 被引量:2
12
作者 秦树增 赵志鹏 +1 位作者 杨胜 韩佳汛 《铁道标准设计》 北大核心 2025年第2期176-182,190,共8页
CTCS-3级列控系统是保障列车在350 km时速下安全运行的关键系统,是铁路无线通信系统承载的关键性核心业务,对于车地间数据通信具有非常高的可靠性要求。5G-R技术的高可靠、低时延、更精细的服务保障机制及增强的高速适应性符合CTCS-3级... CTCS-3级列控系统是保障列车在350 km时速下安全运行的关键系统,是铁路无线通信系统承载的关键性核心业务,对于车地间数据通信具有非常高的可靠性要求。5G-R技术的高可靠、低时延、更精细的服务保障机制及增强的高速适应性符合CTCS-3级列控系统的业务需求。对CTCS-3级列控系统中应用5G-R的必要性和5G-R系统承载CSCS-3级列控数据传输面临的相关问题进行分析,探讨我国未来列控系统通过升级改造适配5G-R系统的技术路线和实现路径,介绍了5G-R模式下CTCS-3级列控车地数据传输机制和5G-R/GSM-R双模模块在基于5G-R的CTCS-3级列控系统中的应用。通过在5G-R专网实验室环境下的列控业务功能和性能试验,对比GSM-R中CSD数据传输的性能指标,探讨5G-R承载列控数据的适用性,研究CTCS-3级列控的服务质量保障机制原理、列控业务专用QoS特性和列控专用QoS流的建立流程,并通过试验验证了5G-R系统的QoS保障机制可以在网络资源紧张的情况下优先保证CTCS-3级列控数据业务的稳定可靠传输。 展开更多
关键词 ctcS-3级列控系统 5G-R 数据传输 性能试验 服务质量
在线阅读 下载PDF
CTC系统中列车运行冲突预测及报警研究 被引量:2
13
作者 苗义烽 张海林 +2 位作者 周晓昭 王振东 赵宏涛 《中国铁路》 北大核心 2025年第5期1-7,共7页
为解决高速、高密度行车场景中,CTC系统冲突检测规则单一等导致计划临近执行期间检查报警量大、安全卡控效用低的问题,引入时间窗口概念下状态时序推演和预测感知机制,设计基于隐马尔科夫模型的高铁列车运行冲突预测及报警方法:CTC系统... 为解决高速、高密度行车场景中,CTC系统冲突检测规则单一等导致计划临近执行期间检查报警量大、安全卡控效用低的问题,引入时间窗口概念下状态时序推演和预测感知机制,设计基于隐马尔科夫模型的高铁列车运行冲突预测及报警方法:CTC系统分隔单一列车状态为时间序列,建立列车计划和站场路径关联的隐马尔科夫行车模型,并求解观测序列概率矩阵;获取目标列车关联计划集合,在时间窗口内定时持续求解关联计划的确定冲突值及预测冲突值;依据冲突值变化趋势,结合标定算法,给出报警决策。仿真试验及现场应用表明,该方法在可接受资源消耗下,大幅减少实际行车无效报警,降低列车间动态冲突时人工介入影响,有效提升高速运行环境下的CTC系统安全性和智能化水平。 展开更多
关键词 高速铁路 ctc 冲突检测报警 隐马尔科夫模型 时间窗口 冲突预测
在线阅读 下载PDF
CTC系统站场界面实景显示和操作自动化测试平台研究 被引量:2
14
作者 刘语馨 许伟 +3 位作者 段晓磊 郎越 张鑫 王政谚 《铁道运输与经济》 北大核心 2025年第3期207-215,共9页
为解决CTC系统站场界面实景显示和操作测试过程中,人工测试方式工作量繁重且主观性强易出现错漏的问题,采用集中控制与分布执行结合的机制,设计CTC系统站场界面实景显示和操作自动化测试平台;在对联锁对象状态自动识别的基础上,实现联锁... 为解决CTC系统站场界面实景显示和操作测试过程中,人工测试方式工作量繁重且主观性强易出现错漏的问题,采用集中控制与分布执行结合的机制,设计CTC系统站场界面实景显示和操作自动化测试平台;在对联锁对象状态自动识别的基础上,实现联锁与CTC执行结果的联合比对;构建基于模态输入的联锁测试条件自动模拟方式,将人工对外部系统的操作转变为自动化操作,并支撑测试环境自启动与复位功能的实现;通过业务流程抽象的固态模型、场景优先级匹配准则与经验库映射关系匹配准则自动生成测试序列;在自动测试模式的基础上增设人工测试模式,以提高平台的泛化能力。平台支持多制式联锁与站型,可实现24小时托管以提高测试效率,在保证测试准确性的同时具有较高的自动化覆盖率,并有效避免平台异常退出后既有测试数据的丢失。 展开更多
关键词 ctc系统 自动测试 界面实景显示和操作 联锁系统 测试管理终端
在线阅读 下载PDF
基于连续时间贝叶斯网络的CTC车站系统可靠性分析
15
作者 谢昕昊 王小敏 江磊 《铁道标准设计》 北大核心 2025年第8期193-200,共8页
针对高速铁路CTC调度集中系统可靠性研究中普遍存在的共因失效、动态失效、切换失效等故障场景的描述问题,基于改进连续时间贝叶斯网络对CTC车站系统进行可靠性与可用性分析。首先针对铁路系统常见的冗余失效与维修行为对连续时间贝叶... 针对高速铁路CTC调度集中系统可靠性研究中普遍存在的共因失效、动态失效、切换失效等故障场景的描述问题,基于改进连续时间贝叶斯网络对CTC车站系统进行可靠性与可用性分析。首先针对铁路系统常见的冗余失效与维修行为对连续时间贝叶斯网络进行算法扩展;其次根据运营逻辑将构建的车站故障树转化为连续时间贝叶斯网络,并将本文模型与传统方案的仿真性能进行对比;最后通过贝叶斯网络正向推理得到系统的故障率,通过反向推理得到系统的薄弱环节,通过维修性能分析得到系统的可用度,通过重要度分析得到系统设备的优化策略。仿真结果表明:对比经典连续时间贝叶斯网络,本文方案增强了冗余失效与维修的建模能力;对比传统离散可靠性分析方案,本文方案既能避免近似估计误差,又能令计算次数仅为传统方案的1/16800;对比传统连续可靠性分析方案,本文方案精简了91.6%状态空间。CTC车站系统在系统运营达到100周时,故障率为0.9712,且随着运营时间增加,故障率增加;CTC车站系统设备在运营过程中系统可用度达到0.999965;系统薄弱环节依次为车务工控机、防雷、采集层设备、协议转换器、自律机主比较子系统、自律机备比较子系统;系统优化优先级为车务工控机、防雷、采集设备、协议转换器,且冗余系统的主件应优先优化。 展开更多
关键词 高速铁路 ctc调度集中 冗余系统 可靠性分析 连续时间贝叶斯网络 优化策略
在线阅读 下载PDF
基于改进ABC与Attention-CTC的语音识别技术研究
16
作者 张竞 《自动化与仪器仪表》 2025年第2期14-17,23,共5页
现阶段的智能化科学技术对于人类听觉系统的分析理解还很弱,无法将其应用于英语语音的识别当中。因此,研究针对智能化英语语音识别遭遇的困难与挑战,将改进后的人工蜂群算法、注意力机制与联接主义时序分类算法相融合,创新性地提出了一... 现阶段的智能化科学技术对于人类听觉系统的分析理解还很弱,无法将其应用于英语语音的识别当中。因此,研究针对智能化英语语音识别遭遇的困难与挑战,将改进后的人工蜂群算法、注意力机制与联接主义时序分类算法相融合,创新性地提出了一种基于改进人工蜂群算法与联接主义时序分类算法的语音识别模型。实验结果表明,研究所提模型的英语语音识别准确率达到了96.23%,单词错误率和字符错误率分别仅为4.67%与1.98%。且研究提出的新型英语语言识别模型P值最高为95.46%,R值最高为92.29%,F1值最高为93.84%,平均检测时间最短仅为2.54 s。由此可知,研究所提新型语音识别模型具有不错的语音特征提取与识别能力,能为智能化英语语音识别提供一定程度的理论支持。 展开更多
关键词 ABC 注意力机制 ctc 英语 语音识别
原文传递
CA199、CA125、CA153、AFP、CEA及CTC对转移性乳腺癌的预测价值
17
作者 尚建华 侯毅 +2 位作者 李振宇 赵艳 韩保卫 《实用癌症杂志》 2025年第8期1261-1264,共4页
目的探究CA199、CA125、CA153、AFP、CEA及CTC对转移性乳腺癌的预测价值。方法收集136例乳腺癌患者临床资料进行回顾性分析。依照患者转移情况分为转移组(n=56例)和非转移组(n=80例)。比较转移组和非转移组一般资料、CA199、CA125、CA15... 目的探究CA199、CA125、CA153、AFP、CEA及CTC对转移性乳腺癌的预测价值。方法收集136例乳腺癌患者临床资料进行回顾性分析。依照患者转移情况分为转移组(n=56例)和非转移组(n=80例)。比较转移组和非转移组一般资料、CA199、CA125、CA153、AFP、CEA、CTC。采用受试者操作特征曲线下面积(AUC)评估CA199、CA125、CA153、AFP、CEA及CTC对转移性乳腺癌的预测价值。结果转移组与非转移组患者年龄、体质量指数、文化程度、病理类型、发病部位比较,差异无统计学意义(P>0.05),转移组CA199、CA125、CA153、AFP、CEA、CTC均高于非转移组(P均<0.05)。CA199、CA125、CA153、AFP、CEA、CTC对转移性乳腺癌均有良好的预测价值,AUC分别为0.694、0.718、0.691、0.612、0.913、0.683,六者联合预测效能最佳,AUC为0.961,灵敏度、特异度较高。结论CA199、CA125、CA153、AFP、CEA、CTC对转移性乳腺癌均有良好的预测价值,但其联合预测效能最佳,可将其作为临床上转移性乳腺癌的预测因子,为转移性乳腺癌的防治提供依据。 展开更多
关键词 CA199 CA125 CA153 AFP CEA ctc 转移性乳腺癌
暂未订购
基于遮蔽多头注意力的CTC-Conformer中文语音识别模型 被引量:1
18
作者 黄天圆 王超 《智能计算机与应用》 2025年第2期162-167,共6页
Conformer模型是语言处理任务中广泛应用的模型之一,其结合了Transformer模型和卷积神经网络的特点,既能捕捉到局部和全局的序列特征又能更好地理解输入数据的结构和上下文信息。然而,现有Conformer模型中的音频和文本之间对齐关系存在... Conformer模型是语言处理任务中广泛应用的模型之一,其结合了Transformer模型和卷积神经网络的特点,既能捕捉到局部和全局的序列特征又能更好地理解输入数据的结构和上下文信息。然而,现有Conformer模型中的音频和文本之间对齐关系存在不确定性,同时模型采用的多头注意力还会将未来时间步输入信息泄漏到当前时间步。采用连接时序分类(Connectionist Temporal Classification, CTC)机制进行辅助训练,不仅可以提高基于Macaron-Net结构的Conformer模型鲁棒性,还可以解决音频和文本不对齐问题。在解码器部分,应用遮蔽多头自注意力机制以确保在t时刻模型无法查看未来时间步的输入信息,从而保证模型仅利用已生成的标记进行预测。实验结果表明,基于遮蔽多头注意力的CTC-Conformer模型相对于Conformer模型的字错率与损失率均有所下降,损失值最低达到了3.24。 展开更多
关键词 CONFORMER ctc 遮蔽多头注意力 语言处理
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
19
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
CBTC系统与CTCS-2系统贯通运行的ATO技术方案 被引量:3
20
作者 崔亦博 孟军 +2 位作者 陈宁宁 廖志斌 王芃 《中国铁路》 北大核心 2025年第1期76-84,共9页
为了更好地实现城轨交通CBTC系统与城际铁路CTCS-2系统贯通运行,研究贯通运行的列车自动运行(ATO)技术方案,设计兼容双制式信号系统的ATO软件结构、制式转换逻辑和速度衔接方案。方案通过CBTC制式ATO软件与CTCS-2制式ATO软件前后台运行... 为了更好地实现城轨交通CBTC系统与城际铁路CTCS-2系统贯通运行,研究贯通运行的列车自动运行(ATO)技术方案,设计兼容双制式信号系统的ATO软件结构、制式转换逻辑和速度衔接方案。方案通过CBTC制式ATO软件与CTCS-2制式ATO软件前后台运行的方式,实现列车以AM模式在CBTC制式与CTCS-2制式间的无缝转换。在2种制式信号系统线路间设置制式转换区,列车在制式转换区内实现不停车转换。研究制定实验室仿真测试方案,搭建测试环境并执行制式转换功能测试,在测试中列车实现了CBTC制式ATO与CTCS-2制式ATO的双向平稳切换。测试数据分析结果表明,ATO在制式转换时的速度抖动在正常范围内,速度曲线平滑,证明了该技术方案的可行性。下一步将结合现场工程线路的技术条件,优化系统参数与软件结构,为系统功能的完善定型和后续工程化应用提供支撑。 展开更多
关键词 城轨交通 城际铁路 贯通运行 CBTC ctcS-2 ATO 制式转换 仿真测试
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部