The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Net...The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach.展开更多
Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniq...Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.展开更多
Nowadays short texts can be widely found in various social data in relation to the 5G-enabled Internet of Things (IoT). Short text classification is a challenging task due to its sparsity and the lack of context. Prev...Nowadays short texts can be widely found in various social data in relation to the 5G-enabled Internet of Things (IoT). Short text classification is a challenging task due to its sparsity and the lack of context. Previous studies mainly tackle these problems by enhancing the semantic information or the statistical information individually. However, the improvement achieved by a single type of information is limited, while fusing various information may help to improve the classification accuracy more effectively. To fuse various information for short text classification, this article proposes a feature fusion method that integrates the statistical feature and the comprehensive semantic feature together by using the weighting mechanism and deep learning models. In the proposed method, we apply Bidirectional Encoder Representations from Transformers (BERT) to generate word vectors on the sentence level automatically, and then obtain the statistical feature, the local semantic feature and the overall semantic feature using Term Frequency-Inverse Document Frequency (TF-IDF) weighting approach, Convolutional Neural Network (CNN) and Bidirectional Gate Recurrent Unit (BiGRU). Then, the fusion feature is accordingly obtained for classification. Experiments are conducted on five popular short text classification datasets and a 5G-enabled IoT social dataset and the results show that our proposed method effectively improves the classification performance.展开更多
In thefield of agriculture,the development of an early warning diagnostic system is essential for timely detection and accurate diagnosis of diseases in rice plants.This research focuses on identifying the plant diseas...In thefield of agriculture,the development of an early warning diagnostic system is essential for timely detection and accurate diagnosis of diseases in rice plants.This research focuses on identifying the plant diseases and detecting them promptly through the advancements in thefield of computer vision.The images obtained from in-field farms are typically with less visual information.However,there is a significant impact on the classification accuracy in the disease diagnosis due to the lack of high-resolution crop images.We propose a novel Reconstructed Disease Aware–Convolutional Neural Network(RDA-CNN),inspired by recent CNN architectures,that integrates image super resolution and classification into a single model for rice plant disease classification.This network takes low-resolution images of rice crops as input and employs the super resolution layers to transform low-resolution images to super-resolution images to recover appearance such as spots,rot,and lesion on different parts of the rice plants.Extensive experimental results indicated that the proposed RDA-CNN method performs well under diverse aspects generating visually pleasing images and outperforms better than other con-ventional Super Resolution(SR)methods.Furthermore,these super-resolution images are subsequently passed through deep classification layers for disease classi-fication.The results demonstrate that the RDA-CNN significantly boosts the clas-sification performance by nearly 4–6%compared with the baseline architectures.展开更多
The data generated from non-Euclidean domains and its graphical representation(with complex-relationship object interdependence)applications has observed an exponential growth.The sophistication of graph data has pose...The data generated from non-Euclidean domains and its graphical representation(with complex-relationship object interdependence)applications has observed an exponential growth.The sophistication of graph data has posed consequential obstacles to the existing machine learning algorithms.In this study,we have considered a revamped version of a semi-supervised learning algorithm for graph-structured data to address the issue of expanding deep learning approaches to represent the graph data.Additionally,the quantum information theory has been applied through Graph Neural Networks(GNNs)to generate Riemannian metrics in closed-form of several graph layers.In further,to pre-process the adjacency matrix of graphs,a new formulation is established to incorporate high order proximities.The proposed scheme has shown outstanding improvements to overcome the deficiencies in Graph Convolutional Network(GCN),particularly,the information loss and imprecise information representation with acceptable computational overhead.Moreover,the proposed Quantum Graph Convolutional Network(QGCN)has significantly strengthened the GCN on semi-supervised node classification tasks.In parallel,it expands the generalization process with a significant difference by making small random perturbationsG of the graph during the training process.The evaluation results are provided on three benchmark datasets,including Citeseer,Cora,and PubMed,that distinctly delineate the superiority of the proposed model in terms of computational accuracy against state-of-the-art GCN and three other methods based on the same algorithms in the existing literature.展开更多
Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze ...Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences.In addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive texts.In this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass others.This paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based approaches.Then,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.展开更多
Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents...Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
Skin cancer is usually classified as melanoma and non-melanoma.Melanoma now represents 75%of humans passing away worldwide and is one of the most brutal types of cancer.Previously,studies were not mainly focused on fea...Skin cancer is usually classified as melanoma and non-melanoma.Melanoma now represents 75%of humans passing away worldwide and is one of the most brutal types of cancer.Previously,studies were not mainly focused on feature extraction of Melanoma,which caused the classification accuracy.However,in this work,Histograms of orientation gradients and local binary pat-terns feature extraction procedures are used to extract the important features such as asymmetry,symmetry,boundary irregularity,color,diameter,etc.,and are removed from both melanoma and non-melanoma images.This proposed Effi-cient Classification Systems for the Diagnosis of Melanoma(ECSDM)framework consists of different schemes such as preprocessing,segmentation,feature extrac-tion,and classification.We used Machine Learning(ML)and Deep Learning(DL)classifiers in the classification framework.The ML classifier is Naïve Bayes(NB)and Support Vector Machines(SVM).And also,DL classification frame-work of the Convolution Neural Network(CNN)is used to classify the melanoma and benign images.The results show that the Neural Network(NNET)classifier’achieves 97.17%of accuracy when contrasting with ML classifiers.展开更多
Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the dise...Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the disease since 2000 and an 80%rise in male deaths.If untreated,it results in complications of many vital organs of the human body which may lead to fatality.Early detection of diabetes is a task of significant importance to start timely treatment.This study introduces a methodology for the classification of diabetic and normal people using an ensemble machine learning model and feature fusion of Chi-square and principal component analysis.An ensemble model,logistic tree classifier(LTC),is proposed which incorporates logistic regression and extra tree classifier through a soft voting mechanism.Experiments are also performed using several well-known machine learning algorithms to analyze their performance including logistic regression,extra tree classifier,AdaBoost,Gaussian naive Bayes,decision tree,random forest,and k nearest neighbor.In addition,several experiments are carried out using principal component analysis(PCA)and Chi-square(Chi-2)fea-tures to analyze the influence of feature selection on the performance of machine learning classifiers.Results indicate that Chi-2 features show high performance than both PCA features and original features.However,the highest accuracy is obtained when the proposed ensemble model LTC is used with the proposed fea-ture fusion framework-work which achieves a 0.85 accuracy score which is the highest of the available approaches for diabetes prediction.In addition,the statis-tical T-test proves the statistical significance of the proposed approach over other approaches.展开更多
One of the most critical objectives of precision farming is to assess the germination quality of seeds.Modern models contribute to thisfield primarily through the use of artificial intelligence techniques such as machin...One of the most critical objectives of precision farming is to assess the germination quality of seeds.Modern models contribute to thisfield primarily through the use of artificial intelligence techniques such as machine learning,which present difficulties in feature extraction and optimization,which are critical factors in predicting accuracy with few false alarms,and another significant dif-ficulty is assessing germination quality.Additionally,the majority of these contri-butions make use of benchmark classification methods that are either inept or too complex to train with the supplied features.This manuscript addressed these issues by introducing a novel ensemble classification strategy dubbed“Assessing Germination Quality of Seed Samples(AGQSS)by Adaptive Boosting Ensemble Classification”that learns from quantitative phase features as well as universal features in greyscale spectroscopic images.The experimental inquiry illustrates the significance of the proposed model,which outperformed the currently avail-able models when performance analysis was performed.展开更多
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi...Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%.展开更多
Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of expe...Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.展开更多
The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification M...The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.展开更多
Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of s...Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively.展开更多
In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker....In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.Due to such massive generation of big data,the utilization of new methods based on Big Data Analytics(BDA),Machine Learning(ML),and Artificial Intelligence(AI)have become essential.In this aspect,the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning(BDA-CSODL)technique for medical image classification on Apache Spark environment.The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately.BDA-CSODL technique involves different stages of operations such as preprocessing,segmentation,fea-ture extraction,and classification.In addition,BDA-CSODL technique also fol-lows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image.Moreover,a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor.Stochastic Gradient Descent(SGD)model is used for parameter tuning process.Furthermore,CSO with Long Short-Term Memory(CSO-LSTM)model is employed as a classification model to determine the appropriate class labels to it.Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique.A wide range of simulations was conducted on benchmark medical image datasets and the com-prehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures.展开更多
Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approach...Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches.展开更多
A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main go...A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main goal of the system is tofind the sentiment behavior of tweets with minimum ambiguity.A well-defined neural network extracts deep features from the tweets automatically.Before extracting features deeper and deeper,the text in each tweet is represented by Bag-of-Words(BoW)and Word Embeddings(WE)models.The effectiveness of DNSCN architecture is analyzed using Twitter-Sanders-Apple2(TSA2),Twit-ter-Sanders-Apple3(TSA3),and Twitter-DataSet(TDS).TSA2 and TDS consist of positive and negative tweets,whereas TSA3 has neutral tweets also.Thus,the proposed DNSCN acts as a binary classifier for TSA2 and TDS databases and a multiclass classifier for TSA3.The performances of DNSCN architecture are evaluated by F1 score,precision,and recall rates using 5-fold and 10-fold cross-validation.Results show that the DNSCN-WE model provides more accuracy than the DNSCN-BoW model for representing the tweets in the feature encoding.The F1 score of the DNSCN-BW based system on the TSA2 database is 0.98(binary classification)and 0.97(three-class classification)for the TSA3 database.This system provides better a F1 score of 0.99 for the TDS database.展开更多
The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisi...The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones.The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data.To over-come the highlighted issue,a Generative Adversarial Network(GAN)deep learn-ing technique in which two neural networks compete to become more accurate in creating artificially realistic data for MRI images.The GAN network contains mainly two parts known as generator and discriminator.Commonly,a generator is the convolutional neural network,and a discriminator is the deconvolutional neural network.In this research,the publicly accessible Contrast-Enhanced Mag-netic Resonance Imaging(CE-MRI)dataset collected from 2005-to 2020 from different hospitals in China consists of four classes has been used.Our proposed method is simple and achieved an accuracy of 96%.We compare our technique results with the existing results,indicating that our proposed technique outper-forms the best results associated with the existing methods.展开更多
文摘The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach.
文摘Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.
基金Supported by A VIDI grant from the Netherlands Organiza-tion for Scientific Research(NWO,to Weersma RK),No.016.136.308an AGIKO grant from the Netherlands Organiza-tion for Scientific Research(NWO to Visschedijk MC),No.92.003.577MLDS grant of the Dutch Digestive Foundation,No.WO 11-72(to Alberts R)
文摘AIM: To validate the Montreal classification system for Crohn’s disease (CD) and ulcerative colitis (UC) within the Netherlands.
基金supported in part by the Beijing Natural Science Foundation under grants M21032 and 19L2029in part by the National Natural Science Foundation of China under grants U1836106 and 81961138010in part by the Scientific and Technological Innovation Foundation of Foshan under grants BK21BF001 and BK20BF010.
文摘Nowadays short texts can be widely found in various social data in relation to the 5G-enabled Internet of Things (IoT). Short text classification is a challenging task due to its sparsity and the lack of context. Previous studies mainly tackle these problems by enhancing the semantic information or the statistical information individually. However, the improvement achieved by a single type of information is limited, while fusing various information may help to improve the classification accuracy more effectively. To fuse various information for short text classification, this article proposes a feature fusion method that integrates the statistical feature and the comprehensive semantic feature together by using the weighting mechanism and deep learning models. In the proposed method, we apply Bidirectional Encoder Representations from Transformers (BERT) to generate word vectors on the sentence level automatically, and then obtain the statistical feature, the local semantic feature and the overall semantic feature using Term Frequency-Inverse Document Frequency (TF-IDF) weighting approach, Convolutional Neural Network (CNN) and Bidirectional Gate Recurrent Unit (BiGRU). Then, the fusion feature is accordingly obtained for classification. Experiments are conducted on five popular short text classification datasets and a 5G-enabled IoT social dataset and the results show that our proposed method effectively improves the classification performance.
文摘In thefield of agriculture,the development of an early warning diagnostic system is essential for timely detection and accurate diagnosis of diseases in rice plants.This research focuses on identifying the plant diseases and detecting them promptly through the advancements in thefield of computer vision.The images obtained from in-field farms are typically with less visual information.However,there is a significant impact on the classification accuracy in the disease diagnosis due to the lack of high-resolution crop images.We propose a novel Reconstructed Disease Aware–Convolutional Neural Network(RDA-CNN),inspired by recent CNN architectures,that integrates image super resolution and classification into a single model for rice plant disease classification.This network takes low-resolution images of rice crops as input and employs the super resolution layers to transform low-resolution images to super-resolution images to recover appearance such as spots,rot,and lesion on different parts of the rice plants.Extensive experimental results indicated that the proposed RDA-CNN method performs well under diverse aspects generating visually pleasing images and outperforms better than other con-ventional Super Resolution(SR)methods.Furthermore,these super-resolution images are subsequently passed through deep classification layers for disease classi-fication.The results demonstrate that the RDA-CNN significantly boosts the clas-sification performance by nearly 4–6%compared with the baseline architectures.
基金supported by the National Key Research and Development Program of China(2018YFB1600600)the National Natural Science Foundation of China under(61976034,U1808206)the Dalian Science and Technology Innovation Fund(2019J12GX035).
文摘The data generated from non-Euclidean domains and its graphical representation(with complex-relationship object interdependence)applications has observed an exponential growth.The sophistication of graph data has posed consequential obstacles to the existing machine learning algorithms.In this study,we have considered a revamped version of a semi-supervised learning algorithm for graph-structured data to address the issue of expanding deep learning approaches to represent the graph data.Additionally,the quantum information theory has been applied through Graph Neural Networks(GNNs)to generate Riemannian metrics in closed-form of several graph layers.In further,to pre-process the adjacency matrix of graphs,a new formulation is established to incorporate high order proximities.The proposed scheme has shown outstanding improvements to overcome the deficiencies in Graph Convolutional Network(GCN),particularly,the information loss and imprecise information representation with acceptable computational overhead.Moreover,the proposed Quantum Graph Convolutional Network(QGCN)has significantly strengthened the GCN on semi-supervised node classification tasks.In parallel,it expands the generalization process with a significant difference by making small random perturbationsG of the graph during the training process.The evaluation results are provided on three benchmark datasets,including Citeseer,Cora,and PubMed,that distinctly delineate the superiority of the proposed model in terms of computational accuracy against state-of-the-art GCN and three other methods based on the same algorithms in the existing literature.
文摘Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences.In addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive texts.In this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass others.This paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based approaches.Then,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.
文摘Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).
文摘Skin cancer is usually classified as melanoma and non-melanoma.Melanoma now represents 75%of humans passing away worldwide and is one of the most brutal types of cancer.Previously,studies were not mainly focused on feature extraction of Melanoma,which caused the classification accuracy.However,in this work,Histograms of orientation gradients and local binary pat-terns feature extraction procedures are used to extract the important features such as asymmetry,symmetry,boundary irregularity,color,diameter,etc.,and are removed from both melanoma and non-melanoma images.This proposed Effi-cient Classification Systems for the Diagnosis of Melanoma(ECSDM)framework consists of different schemes such as preprocessing,segmentation,feature extrac-tion,and classification.We used Machine Learning(ML)and Deep Learning(DL)classifiers in the classification framework.The ML classifier is Naïve Bayes(NB)and Support Vector Machines(SVM).And also,DL classification frame-work of the Convolution Neural Network(CNN)is used to classify the melanoma and benign images.The results show that the Neural Network(NNET)classifier’achieves 97.17%of accuracy when contrasting with ML classifiers.
基金supported by the Florida Center for Advanced Analytics and Data Science funded by Ernesto.Net(under the Algorithms for Good Grant).
文摘Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the disease since 2000 and an 80%rise in male deaths.If untreated,it results in complications of many vital organs of the human body which may lead to fatality.Early detection of diabetes is a task of significant importance to start timely treatment.This study introduces a methodology for the classification of diabetic and normal people using an ensemble machine learning model and feature fusion of Chi-square and principal component analysis.An ensemble model,logistic tree classifier(LTC),is proposed which incorporates logistic regression and extra tree classifier through a soft voting mechanism.Experiments are also performed using several well-known machine learning algorithms to analyze their performance including logistic regression,extra tree classifier,AdaBoost,Gaussian naive Bayes,decision tree,random forest,and k nearest neighbor.In addition,several experiments are carried out using principal component analysis(PCA)and Chi-square(Chi-2)fea-tures to analyze the influence of feature selection on the performance of machine learning classifiers.Results indicate that Chi-2 features show high performance than both PCA features and original features.However,the highest accuracy is obtained when the proposed ensemble model LTC is used with the proposed fea-ture fusion framework-work which achieves a 0.85 accuracy score which is the highest of the available approaches for diabetes prediction.In addition,the statis-tical T-test proves the statistical significance of the proposed approach over other approaches.
文摘One of the most critical objectives of precision farming is to assess the germination quality of seeds.Modern models contribute to thisfield primarily through the use of artificial intelligence techniques such as machine learning,which present difficulties in feature extraction and optimization,which are critical factors in predicting accuracy with few false alarms,and another significant dif-ficulty is assessing germination quality.Additionally,the majority of these contri-butions make use of benchmark classification methods that are either inept or too complex to train with the supplied features.This manuscript addressed these issues by introducing a novel ensemble classification strategy dubbed“Assessing Germination Quality of Seed Samples(AGQSS)by Adaptive Boosting Ensemble Classification”that learns from quantitative phase features as well as universal features in greyscale spectroscopic images.The experimental inquiry illustrates the significance of the proposed model,which outperformed the currently avail-able models when performance analysis was performed.
基金supported by the Researchers Supporting Program(TUMA-Project-2021–27)Almaarefa University,Riyadh,Saudi ArabiaTaif University Researchers Supporting Project Number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%.
文摘Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.
基金Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.
文摘Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively.
基金The author extends his appreciation to the Deanship of Scientific Research at Majmaah University for funding this study under Project Number(R-2022-61).
文摘In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.Due to such massive generation of big data,the utilization of new methods based on Big Data Analytics(BDA),Machine Learning(ML),and Artificial Intelligence(AI)have become essential.In this aspect,the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning(BDA-CSODL)technique for medical image classification on Apache Spark environment.The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately.BDA-CSODL technique involves different stages of operations such as preprocessing,segmentation,fea-ture extraction,and classification.In addition,BDA-CSODL technique also fol-lows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image.Moreover,a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor.Stochastic Gradient Descent(SGD)model is used for parameter tuning process.Furthermore,CSO with Long Short-Term Memory(CSO-LSTM)model is employed as a classification model to determine the appropriate class labels to it.Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique.A wide range of simulations was conducted on benchmark medical image datasets and the com-prehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures.
文摘Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches.
文摘A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main goal of the system is tofind the sentiment behavior of tweets with minimum ambiguity.A well-defined neural network extracts deep features from the tweets automatically.Before extracting features deeper and deeper,the text in each tweet is represented by Bag-of-Words(BoW)and Word Embeddings(WE)models.The effectiveness of DNSCN architecture is analyzed using Twitter-Sanders-Apple2(TSA2),Twit-ter-Sanders-Apple3(TSA3),and Twitter-DataSet(TDS).TSA2 and TDS consist of positive and negative tweets,whereas TSA3 has neutral tweets also.Thus,the proposed DNSCN acts as a binary classifier for TSA2 and TDS databases and a multiclass classifier for TSA3.The performances of DNSCN architecture are evaluated by F1 score,precision,and recall rates using 5-fold and 10-fold cross-validation.Results show that the DNSCN-WE model provides more accuracy than the DNSCN-BoW model for representing the tweets in the feature encoding.The F1 score of the DNSCN-BW based system on the TSA2 database is 0.98(binary classification)and 0.97(three-class classification)for the TSA3 database.This system provides better a F1 score of 0.99 for the TDS database.
基金Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia.
文摘The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones.The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data.To over-come the highlighted issue,a Generative Adversarial Network(GAN)deep learn-ing technique in which two neural networks compete to become more accurate in creating artificially realistic data for MRI images.The GAN network contains mainly two parts known as generator and discriminator.Commonly,a generator is the convolutional neural network,and a discriminator is the deconvolutional neural network.In this research,the publicly accessible Contrast-Enhanced Mag-netic Resonance Imaging(CE-MRI)dataset collected from 2005-to 2020 from different hospitals in China consists of four classes has been used.Our proposed method is simple and achieved an accuracy of 96%.We compare our technique results with the existing results,indicating that our proposed technique outper-forms the best results associated with the existing methods.