A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was ...A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569℃ to 632℃. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003(75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.展开更多
Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous report...Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study展开更多
基金the support of the Science and Technology Program of Guangzhou, China (No.2015B090926013)the doctoral foundation of the China Ministry of Education (No.20130042130001)
文摘A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569℃ to 632℃. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003(75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.
文摘Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study