Base isolation is one of the most promising alternatives among the structure control methods.In recent decades,base isolation has been seriously considered for civil structures,such as buildings and bridges,subjected ...Base isolation is one of the most promising alternatives among the structure control methods.In recent decades,base isolation has been seriously considered for civil structures,such as buildings and bridges,subjected to ground motion.The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology(HUST)are introduced.The achievements include project applications,experimental research results and theoretical innovation.展开更多
In the last twenty years, near-field problems became an important topic for both seismologists and civil engineers. The one aspect is to illuminate mechanisms of earthquakes and explain new phenomena. The another aspe...In the last twenty years, near-field problems became an important topic for both seismologists and civil engineers. The one aspect is to illuminate mechanisms of earthquakes and explain new phenomena. The another aspect is the ground motions, which are usually assigned by engineers as a type of input load for seismic design of structures, sometimes can control the final design results. The experiments, performance evaluations and other related aspects are all based on the specified type of load. As a result, many aspects related to civil engineering will be influenced by changes of the type of load, Hence, the characteristics of the load and the corresponding response of structures are desired for studying. In this paper, the state-of-the-art of near-field problems in civil engineering is comprehensively reviewed, which include inherent characteristics of near-field ground motions and influences of these ground motions on civil structures. The existing problems are pointed out and work needed to be further investigated in the future is suggested. It is believed that the information in this paper can be useful to advance the state of investigation on near-field problems.展开更多
Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for a...Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring.展开更多
With the continuous development of society, the number of civil engineering projects is also increasing with the development of society. Civil engineering safety management is a very important part of it. It is necess...With the continuous development of society, the number of civil engineering projects is also increasing with the development of society. Civil engineering safety management is a very important part of it. It is necessary to have a strong sense of safety management and ensure the structural safety of civil engineering so as to promote the rapid development of China's construction industry more effectively. To civil engineering structure security problems, in fact, is refers to the engineering structural indicators, the indicators including ability to resist collapse and corruption based on the external environment. And the indicators for the civil engineering construction are the core content. The corresponding indexes must be reached to ensure the civil engineering in the construction and in the later use process has no accidents. In the study of this paper, based on the actual situation of the safety of advanced civil construction structures in China, the possible problems in civil engineering design are discussed, and combined with specific investigation and analysis, according to the requirements of relevant indicators and relevant factors, put forward targeted countermeasures and suggestions for improvement.展开更多
The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a...The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a series of experimental blasts were conducted by adjusting various blast design parameters at project site.The safe charge weight per delay was kept between 0.125 and 0.375 kg.The outcomes of these experimental blasts were analyzed to recommend optimized blasting patterns and methods for the overall excavation process during actual blasting operations.Blast design parameters,including the maximum quantity of explosive per delay,hole depth,burden and spacing between holes were optimized by using a site-specific attenuation equation,taking into account the proximity of the dam and tunnel from the blasting area.Peak particle velocity(PPV)level of 10 mm/s and 50 mm/s respectively were adopted as the safe vibration level for ensuring safety of the Bhira Earthen Dam and the nearby tunnel from the adverse effects of blast vibrations by analyzing the dominant frequency of ground vibrations observed and also by reviewing various international standards.Frequency of the ground vibrations observed on the dam and tunnel from majority of the blasts was found to be more than 10 Hz and 50 Hz respectively.During the entire period of blasting,the blast vibrations were recorded to be far lower than the safe vibration level set for these structures.Maximum Vibration level of about 0.8 mm/s and 35 mm/s were observed on dam and tunnel respectively which are far lower than the safe vibration level adopted for these structures.Hence,the entire excavation work was completed successfully and safely,without endangering the safety of dam or tunnel.展开更多
A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small com...A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small compared to the structural scale. Different length scales should be adopted considering the efficiency and computational cost. In the principle of physics, different length scales are stipulated to correspond to different time scales. This concept lays the foundation of the framework for this multiple-time-scale algorithm. A multiple-time-scale algorithm, which involves different time steps for different regions, while enforcing the compatibility of displacement, force and stress fields across the interface, is proposed. Furthermore, a defected beam component is studied as a numerical sample. The structural component is divided into two regions: a coarse one and a fine one; a micro-defect exists in the fine region and the finite element sizes of the two regions are diametrically different. Correspondingly, two different time steps are adopted. With dynamic load applied to the beam, stress and displacement distribution of the defected beam is investigated from the global and local perspectives. The numerical sample reflects that the proposed algorithm is physically rational and computationally efficient in the potential damage simulation of civil structures.展开更多
基金funded by the National Natural Science Foundation of China(Grant No:50925828 and 50778077)
文摘Base isolation is one of the most promising alternatives among the structure control methods.In recent decades,base isolation has been seriously considered for civil structures,such as buildings and bridges,subjected to ground motion.The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology(HUST)are introduced.The achievements include project applications,experimental research results and theoretical innovation.
基金National Natural Science Foundation of China (50538050, 50608024)
文摘In the last twenty years, near-field problems became an important topic for both seismologists and civil engineers. The one aspect is to illuminate mechanisms of earthquakes and explain new phenomena. The another aspect is the ground motions, which are usually assigned by engineers as a type of input load for seismic design of structures, sometimes can control the final design results. The experiments, performance evaluations and other related aspects are all based on the specified type of load. As a result, many aspects related to civil engineering will be influenced by changes of the type of load, Hence, the characteristics of the load and the corresponding response of structures are desired for studying. In this paper, the state-of-the-art of near-field problems in civil engineering is comprehensively reviewed, which include inherent characteristics of near-field ground motions and influences of these ground motions on civil structures. The existing problems are pointed out and work needed to be further investigated in the future is suggested. It is believed that the information in this paper can be useful to advance the state of investigation on near-field problems.
基金the National Natural Science Funding of China(No.51878628,51708520).
文摘Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring.
文摘With the continuous development of society, the number of civil engineering projects is also increasing with the development of society. Civil engineering safety management is a very important part of it. It is necessary to have a strong sense of safety management and ensure the structural safety of civil engineering so as to promote the rapid development of China's construction industry more effectively. To civil engineering structure security problems, in fact, is refers to the engineering structural indicators, the indicators including ability to resist collapse and corruption based on the external environment. And the indicators for the civil engineering construction are the core content. The corresponding indexes must be reached to ensure the civil engineering in the construction and in the later use process has no accidents. In the study of this paper, based on the actual situation of the safety of advanced civil construction structures in China, the possible problems in civil engineering design are discussed, and combined with specific investigation and analysis, according to the requirements of relevant indicators and relevant factors, put forward targeted countermeasures and suggestions for improvement.
文摘The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a series of experimental blasts were conducted by adjusting various blast design parameters at project site.The safe charge weight per delay was kept between 0.125 and 0.375 kg.The outcomes of these experimental blasts were analyzed to recommend optimized blasting patterns and methods for the overall excavation process during actual blasting operations.Blast design parameters,including the maximum quantity of explosive per delay,hole depth,burden and spacing between holes were optimized by using a site-specific attenuation equation,taking into account the proximity of the dam and tunnel from the blasting area.Peak particle velocity(PPV)level of 10 mm/s and 50 mm/s respectively were adopted as the safe vibration level for ensuring safety of the Bhira Earthen Dam and the nearby tunnel from the adverse effects of blast vibrations by analyzing the dominant frequency of ground vibrations observed and also by reviewing various international standards.Frequency of the ground vibrations observed on the dam and tunnel from majority of the blasts was found to be more than 10 Hz and 50 Hz respectively.During the entire period of blasting,the blast vibrations were recorded to be far lower than the safe vibration level set for these structures.Maximum Vibration level of about 0.8 mm/s and 35 mm/s were observed on dam and tunnel respectively which are far lower than the safe vibration level adopted for these structures.Hence,the entire excavation work was completed successfully and safely,without endangering the safety of dam or tunnel.
基金supports from NSFC(No.11302078)China Postdoctoral Science Foundation(No.2013M531139)Shanghai Postdoctoral Sustentation Fund(No.12R21412000)
文摘A multiple-time-scale algorithm is developed to numerically simulate certain structural components in civil structures where local defects inevitably exist. Spatially, the size of local defects is relatively small compared to the structural scale. Different length scales should be adopted considering the efficiency and computational cost. In the principle of physics, different length scales are stipulated to correspond to different time scales. This concept lays the foundation of the framework for this multiple-time-scale algorithm. A multiple-time-scale algorithm, which involves different time steps for different regions, while enforcing the compatibility of displacement, force and stress fields across the interface, is proposed. Furthermore, a defected beam component is studied as a numerical sample. The structural component is divided into two regions: a coarse one and a fine one; a micro-defect exists in the fine region and the finite element sizes of the two regions are diametrically different. Correspondingly, two different time steps are adopted. With dynamic load applied to the beam, stress and displacement distribution of the defected beam is investigated from the global and local perspectives. The numerical sample reflects that the proposed algorithm is physically rational and computationally efficient in the potential damage simulation of civil structures.