MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. Th...MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. The miRNAs are approximately 21 nucleotides long and code for the complementary strand to a larger genic mRNA. They are often found within the complementary primary transcript (pri-miRNAs). In the past few years, a growing number of soybean miRNAs have been discovered, however, little is known about the transcriptional regulation of these miRNAs. In this study, promoters and cis-acting elements of soybean miRNAs were analyzed using the genomic data for the first time. A total of 82 miRNAs were located among 122 loci in genome, some were present as double or multiple copies. Five clusters that included ten miRNAs were found in genome, and only one cluster share the same promoter. A total of 191 promoters from 122 loci of the soybean miRNA sequences were found and further analyzed. The results indicated that the conserved soybean miRNA genes had a greater proportion of promoters than that of non-conserved ones, and the distribution of the transcript start sites (TSSs) and TATA-boxes found had different motif styles between conserved and non-conserved miRNA genes. Furthermore, the cis-acting elements 5' of the TSSs were analyzed to obtain potential function and spatiotemporal expression pattern of miRNAs. The data obtained here may lead to the identification of specific sequences upstream of pre-miRNAs and the functional annotation of miRNAs in soybean.展开更多
Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids c...Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.展开更多
Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthes...Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.展开更多
On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked def...On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked deftly at the stove,his hands moving swiftly over the scorching iron wok as tender green tea leaves dance between his fingers.展开更多
We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-...We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.展开更多
An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin ge...An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin gene, has been identified by using gel mobility shift assay.Meanwhile, Southwestern blotting assay showed that the nuclear matrix protein ε-NMP_k in K562,cells may be composed of two polypeptides ( ~ 40 ku). In addition, it is observed in the gel mobility shift assay that the nuclear matrix proteins from K562, HEL and Raji cells can bind to the silencer DNA ( - 392— -177 bp) in the 5’-flanking sequence of human ε-globin gene respectively. However, the shift band K detected in K562 cells is different from shift band H/R in HEL and Raji cells, suggesting that a common nuclear matrix protein may exist in HEL and Raji cells. Results show that the nuclear matrix protein may play an important role in the regulation of the human ε-globin gene expression.展开更多
Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se...Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.展开更多
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However...Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.展开更多
The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This pap...The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This paper aims to reveal the impact mechanism of the data elements on the“three transformations”(high-end,intelligent,and green)in the manufacturing sector,theoretically elucidating the intrinsic mechanisms by which the data elements influence these transformations.The study finds that the data elements significantly enhance the high-end,intelligent,and green levels of China's manufacturing industry.In terms of the pathways of impact,the data elements primarily influence the development of high-tech industries and overall green technological innovation,thereby affecting the high-end,intelligent,and green transformation of the industry.展开更多
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper...As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].展开更多
The effect of adding Cr and Mg on the microstructure and properties of Cu−Ti alloys was examined.Cu−Ti−Cr−Mg alloys were fabricated using vacuum induction melting.The microstructure and phase composition of Cu−Ti−Cr−M...The effect of adding Cr and Mg on the microstructure and properties of Cu−Ti alloys was examined.Cu−Ti−Cr−Mg alloys were fabricated using vacuum induction melting.The microstructure and phase composition of Cu−Ti−Cr−Mg alloys in different aging states were characterized.Additionally,the hardness and electrical conductivity of the materials were investigated.Results show that the precipitation pattern in Cu−Ti−Cr−Mg alloys resembled that of binary Cu−Ti alloys,with Cr and Ti forming the intermetallic compound of Cr_(2)Ti during casting.The introduction of Cr and Mg increased the hardness of the alloy.Increasing the Mg content in the Cu−Ti−Cr−Mg alloy led to grain refinement and fast nucleation of continuous precipitates during the early aging stage.Moreover,the addition of Mg impeded discontinuous precipitate growth by segregating along the precipitate surfaces.Consequently,the Cu−4Ti−0.5Cr−1Mg alloy exhibited limited discontinuous precipitates at the grain boundaries and a gradual decline in hardness during the over-aging period.展开更多
In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings...In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one.展开更多
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ...The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.展开更多
Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical compositi...Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical composition of the film surface was determined using surface characterization techniques.The corrosion resistance of the films was characterized using electrochemical impedance spectroscopy,potentiodynamic polarization,and scanning Kelvin probe microscopy at multiple scales.The thermal stability,mechanical stability,and self-cleaning properties of the films were also characterized.It was determined that the Cu–Co–Ni superhydrophobic film exhibited the best performance,with a static water contact angle of 159.3°,a roll-off angle of 2.3°,a charge transfer resistance 3300 times higher than the substrate,a self-corrosion current density nearly three orders of magnitude lower,and a surface Kelvin potential increase of 420 mV.The film demonstrated good thermal stability,excellent mechanical stability,and outstanding self-cleaning properties.Combining with previous studies,it was found that Co elements in the film contribute to the formation of a uniform and dense film,Ni elements enhance the adhesion and corrosion resistance between the films,and the combination of Co and Ni elements promotes uniform surface potential and further improves the corrosion resistance and interfilm adhesion of the films.展开更多
This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples w...This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.展开更多
The presence of inorganic constituents in coal is controlled by different geological factors,which,in turn,affect the technological,environmental,and health impacts of the coal.The main aim of this study is to objecti...The presence of inorganic constituents in coal is controlled by different geological factors,which,in turn,affect the technological,environmental,and health impacts of the coal.The main aim of this study is to objectively assess the mineralogical and geochemical characteristics of a thickest low-rank coal seam in the Lower Indus Basin southeastern Pakistan,and further investigate different controlling factors.The analytical results of major oxides,trace elements,and rare earth elements revealed that the weathering conditions were progressively variable and moderate.The sediment source,mainly of felsic and intermediate composition,was dominated by granitic rocks.The geochemical assessment reveals different depositional factors like marine environment influenced,while transitional and freshwater sediments influenced the center of the coal peat mire.Strontium,Zinc,and several hazardous trace elements,including Cu,Ni,Cr,and Co,have higher concentrations in these coals compared to world low-rank,U.S.,and Chinese coals.The relatively higher concentration of Sr in the thick coal seam in the Lower Indus Basin,compared to other coals seams in Pakistan and the enrichment of Sr was primarily controlled by the denudation of crystalline rocks and marine influx in the coal-basin.The REY distribution pattern showed that enrichment of medium and heavy rare earth elements is higher than light rare earth elements in the coal seam.The Gd distribution pattern in the coal seam demonstrated that strong positive anomalies had a good affinity with paleo-acidic water concentration in the study area.The higher concentration of Sr and other elements enables a better assessment understanding of the coal geochemical history.展开更多
Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of t...Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of the graphite used in the fuel element for these reactors being susceptible to molten salt infiltration,carbon black(CB)was added to increase the density of the graphite,and a fuel element(TRISO(tri-structural isotropic)fuel particles were randomly distributed in the modified graphite matrix)was prepared by cold isostatic pressing process.An out-of-pile performance study shows that the densification and pore structure of the modified graphite matrix were improved,as was the resistance to molten salt infiltration.The median pore size of the modified graphite was reduced from 673 to 433 nm and the threshold pressure for molten salt(FLiBe,66%(molar fraction)LiF and 34%BeF_(2))infiltration was increased from 0.88 to 1.37 MPa.The isotropic CB made the graphite matrix less anisotropic,while its thermal conductivity and compressive strength were reduced due to the difficult graphitization of CB.Fuel elements containing 20%(volume fraction)TRISO particles were prepared.Numerical simulations show that the power and temperature distribution of the fuel were in line with the design requirements.The modified graphite matrix had a higher density,smaller pores,a lower anisotropy and a greater resistance to FLiBe infiltration.展开更多
Under the starry night,a fashion extravaganza was staged in Lhasa.The Fashion Night is a local fashion show in Xizang combining tradition and innovation as well as modernity and international flavor.By providing them ...Under the starry night,a fashion extravaganza was staged in Lhasa.The Fashion Night is a local fashion show in Xizang combining tradition and innovation as well as modernity and international flavor.By providing them with opportunities to present their art works to more audiences,it built a platform for young Tibetan designers for their careers to take root and blossom on the plateau.It is also aimed to bring more people to pay attention to the fashion culture of Xizang,and infuse new vitality into the development of local fashion industry.展开更多
This review systematically summarizes the core advances in the field of trace elements and tumors,and clarifies the dual roles of key elements such as Zn,Cu,Fe,Se,Mn,and Ni in tumorigenesis(e.g.,DNA damage repair),tum...This review systematically summarizes the core advances in the field of trace elements and tumors,and clarifies the dual roles of key elements such as Zn,Cu,Fe,Se,Mn,and Ni in tumorigenesis(e.g.,DNA damage repair),tumor progression(e.g.,tumor microenvironment regulation),and therapeutic response-these elements not only possess tumor-suppressive potential but can also contribute to tumorigenesis.Meanwhile,it confirms the breakthrough value of multi-omics technologies and organoid models in deciphering the“element-cell-tumor”interaction mechanisms,which overcomes the limitations of traditional in vitro experiments and also points out the core directions for subsequent clinical research.展开更多
In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain th...In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain the contents of rare earth elements(REE)to explore the degree of preservation of paleo-seawater information by carbonate components and elucidate the provenance relationship between the QDNB and the Yinggehai Basin and the provenance changes in the deep-water area of the QDNB since the Oligocene.The main achievements of this paper are as follows:(1)In the process of extracting the autogenic carbonate,the iron-manganese oxide envelope on the surface of the sediment particles(which can adsorb REE or its complexes in seawater)will partially dissolve into the autogenic carbonate components,thus covering the REE geochem-ical information of paleo-seawater carried by the auto-genic carbonate.Therefore,caution should be exercised when using the geochemical characteristics of REE in the carbonate component of impure carbonate rocks to reflect the sedimentary paleoenvironment.(2)The analysis of the REE geochemical characteristics of multiple cores in the Ying-gehai-QDNB shows that there is a close provenance rela-tionship between the two Basins.The sediments in the central depression area of the Yinggehai Basin and the deep-water area in the western part of the QDNB generally contain more feldspar(Eu-rich)minerals.Since the Eocene,paleo-rivers have carried ultramafic-mafic materials originating from the western South China Sea into the sea.Affected by the transport distance and sea level changes,the content of feldspar(Eu-rich)minerals in the sediments of the QDNB from west to east gradually decreased.展开更多
基金supported by the National High-Tech R&D Program of China (863 Program,2006AA100104-4)the Project of 948 from Ministryof Agriculture of China (2006-G5)+5 种基金the National Nature Science Foundation of China (30971810,60932008)the National Basic Research Program ofChina (973 Program, 2009CB118400)the Postdoctoral Fund in Heilongjiang Province, China (LBH-Z07228)the Foundation Projects of Northeast Agricultural University, Chinathe Technology Project of Education Ministry of Heilongjiang Province, China(11541025)the Technology Project of Harbin,China (2009RFQXN085)
文摘MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. The miRNAs are approximately 21 nucleotides long and code for the complementary strand to a larger genic mRNA. They are often found within the complementary primary transcript (pri-miRNAs). In the past few years, a growing number of soybean miRNAs have been discovered, however, little is known about the transcriptional regulation of these miRNAs. In this study, promoters and cis-acting elements of soybean miRNAs were analyzed using the genomic data for the first time. A total of 82 miRNAs were located among 122 loci in genome, some were present as double or multiple copies. Five clusters that included ten miRNAs were found in genome, and only one cluster share the same promoter. A total of 191 promoters from 122 loci of the soybean miRNA sequences were found and further analyzed. The results indicated that the conserved soybean miRNA genes had a greater proportion of promoters than that of non-conserved ones, and the distribution of the transcript start sites (TSSs) and TATA-boxes found had different motif styles between conserved and non-conserved miRNA genes. Furthermore, the cis-acting elements 5' of the TSSs were analyzed to obtain potential function and spatiotemporal expression pattern of miRNAs. The data obtained here may lead to the identification of specific sequences upstream of pre-miRNAs and the functional annotation of miRNAs in soybean.
基金This research was supported by National Key Research and Development Program of China(Grant No.2018YFD1000200)National Natural Science Foundation of China(Grant nos.31930095 and 31630065)We should thank Prof.Zuoxiong Liu for editing the English language of the manuscript.
文摘Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.
基金supported by the National Key Project of Transgenic Variety Development of China(Nos.2011ZX08009-004 and 2013ZX08009-004)Shanghai Key Laboratory of Bio-Energy Cropsthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.
文摘On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked deftly at the stove,his hands moving swiftly over the scorching iron wok as tender green tea leaves dance between his fingers.
基金supported in part by the National Key R&D Program of China (Contract Nos.2023YFA1606500,2024YFE0109800,and 2024YFE0110400)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34010000)+5 种基金the Gansu Key Project of Science and Technology (Grant No.23ZDGA014)the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2021B0301030006)the National Natural Science Foundation of China (Grant Nos.12105328,W2412040,12475126,12422507,12035011,12375118,12435008,and W2412043)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-002)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos.2020409 and 2023439)the Russian Science Foundation (Grant No.25-42-00003)。
文摘We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.
基金supported by the National Natural Science Foundation of China(Grant No.39893320)the Foundation of the Chinese Academy of Sciences(Grant No.kJ982-J1-618)
文摘An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin gene, has been identified by using gel mobility shift assay.Meanwhile, Southwestern blotting assay showed that the nuclear matrix protein ε-NMP_k in K562,cells may be composed of two polypeptides ( ~ 40 ku). In addition, it is observed in the gel mobility shift assay that the nuclear matrix proteins from K562, HEL and Raji cells can bind to the silencer DNA ( - 392— -177 bp) in the 5’-flanking sequence of human ε-globin gene respectively. However, the shift band K detected in K562 cells is different from shift band H/R in HEL and Raji cells, suggesting that a common nuclear matrix protein may exist in HEL and Raji cells. Results show that the nuclear matrix protein may play an important role in the regulation of the human ε-globin gene expression.
基金supported by the National Natural Science Foundation of China, No.61932008Natural Science Foundation of Shanghai, No.21ZR1403200 (both to JC)。
文摘Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
基金supports from the National Key Research and Development Program of China(2023YFB2806803)the National Natural Science Foundation of China(62075127).
文摘Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.
文摘The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This paper aims to reveal the impact mechanism of the data elements on the“three transformations”(high-end,intelligent,and green)in the manufacturing sector,theoretically elucidating the intrinsic mechanisms by which the data elements influence these transformations.The study finds that the data elements significantly enhance the high-end,intelligent,and green levels of China's manufacturing industry.In terms of the pathways of impact,the data elements primarily influence the development of high-tech industries and overall green technological innovation,thereby affecting the high-end,intelligent,and green transformation of the industry.
基金supported by National Natural Science Foundation of China(Grants 72474022,71974011,72174022,71972012,71874009)"BIT think tank"Promotion Plan of Science and Technology Innovation Program of Beijing Institute of Technology(Grants 2024CX14017,2023CX13029).
文摘As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].
基金supported by the National Natural Science Foundation of China(No.52201226)Fundamental Research Program of Shanxi Province,China(No.202103021223036)+1 种基金the Key Scientific Research Project in Shanxi Province,China(No.202102050201007)the special fund for Science and Technology Innovation Teams of Shanxi Province,China(No.202204051001004)。
文摘The effect of adding Cr and Mg on the microstructure and properties of Cu−Ti alloys was examined.Cu−Ti−Cr−Mg alloys were fabricated using vacuum induction melting.The microstructure and phase composition of Cu−Ti−Cr−Mg alloys in different aging states were characterized.Additionally,the hardness and electrical conductivity of the materials were investigated.Results show that the precipitation pattern in Cu−Ti−Cr−Mg alloys resembled that of binary Cu−Ti alloys,with Cr and Ti forming the intermetallic compound of Cr_(2)Ti during casting.The introduction of Cr and Mg increased the hardness of the alloy.Increasing the Mg content in the Cu−Ti−Cr−Mg alloy led to grain refinement and fast nucleation of continuous precipitates during the early aging stage.Moreover,the addition of Mg impeded discontinuous precipitate growth by segregating along the precipitate surfaces.Consequently,the Cu−4Ti−0.5Cr−1Mg alloy exhibited limited discontinuous precipitates at the grain boundaries and a gradual decline in hardness during the over-aging period.
基金Supported by National Natural Science Foundation of China(12301041)。
文摘In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one.
基金supported by the National Key R&D Program of China(No.2022YFB2404400)the National Natural Science Foundation of China(Nos.U23A20577,52372168,92263206 and 21975006)+1 种基金the“The Youth Beijing Scholars program”(No.PXM2021_014204_000023)the Beijing Natural Science Foundation(Nos.2222001 and KM202110005009).
文摘The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.
基金fnancial support by the National Natural Science Foundation of China(Grant No.42176209)the Natural Science Foundation of Shandong Province(Grant No.ZR2021MD064).
文摘Cu–Ni and Cu–Co–Ni superhydrophobic films were constructed on the surface of B10 copper–nickel alloy welded joints using a two-step process of electrodeposition and stearic acid modification.The chemical composition of the film surface was determined using surface characterization techniques.The corrosion resistance of the films was characterized using electrochemical impedance spectroscopy,potentiodynamic polarization,and scanning Kelvin probe microscopy at multiple scales.The thermal stability,mechanical stability,and self-cleaning properties of the films were also characterized.It was determined that the Cu–Co–Ni superhydrophobic film exhibited the best performance,with a static water contact angle of 159.3°,a roll-off angle of 2.3°,a charge transfer resistance 3300 times higher than the substrate,a self-corrosion current density nearly three orders of magnitude lower,and a surface Kelvin potential increase of 420 mV.The film demonstrated good thermal stability,excellent mechanical stability,and outstanding self-cleaning properties.Combining with previous studies,it was found that Co elements in the film contribute to the formation of a uniform and dense film,Ni elements enhance the adhesion and corrosion resistance between the films,and the combination of Co and Ni elements promotes uniform surface potential and further improves the corrosion resistance and interfilm adhesion of the films.
文摘This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.
基金supported by the National Natural Science Foundation of China,funding numbers 41690131,41572327,51874280 and 5264015.
文摘The presence of inorganic constituents in coal is controlled by different geological factors,which,in turn,affect the technological,environmental,and health impacts of the coal.The main aim of this study is to objectively assess the mineralogical and geochemical characteristics of a thickest low-rank coal seam in the Lower Indus Basin southeastern Pakistan,and further investigate different controlling factors.The analytical results of major oxides,trace elements,and rare earth elements revealed that the weathering conditions were progressively variable and moderate.The sediment source,mainly of felsic and intermediate composition,was dominated by granitic rocks.The geochemical assessment reveals different depositional factors like marine environment influenced,while transitional and freshwater sediments influenced the center of the coal peat mire.Strontium,Zinc,and several hazardous trace elements,including Cu,Ni,Cr,and Co,have higher concentrations in these coals compared to world low-rank,U.S.,and Chinese coals.The relatively higher concentration of Sr in the thick coal seam in the Lower Indus Basin,compared to other coals seams in Pakistan and the enrichment of Sr was primarily controlled by the denudation of crystalline rocks and marine influx in the coal-basin.The REY distribution pattern showed that enrichment of medium and heavy rare earth elements is higher than light rare earth elements in the coal seam.The Gd distribution pattern in the coal seam demonstrated that strong positive anomalies had a good affinity with paleo-acidic water concentration in the study area.The higher concentration of Sr and other elements enables a better assessment understanding of the coal geochemical history.
文摘Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of the graphite used in the fuel element for these reactors being susceptible to molten salt infiltration,carbon black(CB)was added to increase the density of the graphite,and a fuel element(TRISO(tri-structural isotropic)fuel particles were randomly distributed in the modified graphite matrix)was prepared by cold isostatic pressing process.An out-of-pile performance study shows that the densification and pore structure of the modified graphite matrix were improved,as was the resistance to molten salt infiltration.The median pore size of the modified graphite was reduced from 673 to 433 nm and the threshold pressure for molten salt(FLiBe,66%(molar fraction)LiF and 34%BeF_(2))infiltration was increased from 0.88 to 1.37 MPa.The isotropic CB made the graphite matrix less anisotropic,while its thermal conductivity and compressive strength were reduced due to the difficult graphitization of CB.Fuel elements containing 20%(volume fraction)TRISO particles were prepared.Numerical simulations show that the power and temperature distribution of the fuel were in line with the design requirements.The modified graphite matrix had a higher density,smaller pores,a lower anisotropy and a greater resistance to FLiBe infiltration.
文摘Under the starry night,a fashion extravaganza was staged in Lhasa.The Fashion Night is a local fashion show in Xizang combining tradition and innovation as well as modernity and international flavor.By providing them with opportunities to present their art works to more audiences,it built a platform for young Tibetan designers for their careers to take root and blossom on the plateau.It is also aimed to bring more people to pay attention to the fashion culture of Xizang,and infuse new vitality into the development of local fashion industry.
文摘This review systematically summarizes the core advances in the field of trace elements and tumors,and clarifies the dual roles of key elements such as Zn,Cu,Fe,Se,Mn,and Ni in tumorigenesis(e.g.,DNA damage repair),tumor progression(e.g.,tumor microenvironment regulation),and therapeutic response-these elements not only possess tumor-suppressive potential but can also contribute to tumorigenesis.Meanwhile,it confirms the breakthrough value of multi-omics technologies and organoid models in deciphering the“element-cell-tumor”interaction mechanisms,which overcomes the limitations of traditional in vitro experiments and also points out the core directions for subsequent clinical research.
基金supported by The National Science and Technology Major Project under contract(No.2011ZX05025-002-03)The Project of China National Offshore Oil Corporation(CNOOC)Limited under contract(No.CCL2013ZJFNO729)The National Natural Science Foundation of China under contract(No.41530963)。
文摘In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain the contents of rare earth elements(REE)to explore the degree of preservation of paleo-seawater information by carbonate components and elucidate the provenance relationship between the QDNB and the Yinggehai Basin and the provenance changes in the deep-water area of the QDNB since the Oligocene.The main achievements of this paper are as follows:(1)In the process of extracting the autogenic carbonate,the iron-manganese oxide envelope on the surface of the sediment particles(which can adsorb REE or its complexes in seawater)will partially dissolve into the autogenic carbonate components,thus covering the REE geochem-ical information of paleo-seawater carried by the auto-genic carbonate.Therefore,caution should be exercised when using the geochemical characteristics of REE in the carbonate component of impure carbonate rocks to reflect the sedimentary paleoenvironment.(2)The analysis of the REE geochemical characteristics of multiple cores in the Ying-gehai-QDNB shows that there is a close provenance rela-tionship between the two Basins.The sediments in the central depression area of the Yinggehai Basin and the deep-water area in the western part of the QDNB generally contain more feldspar(Eu-rich)minerals.Since the Eocene,paleo-rivers have carried ultramafic-mafic materials originating from the western South China Sea into the sea.Affected by the transport distance and sea level changes,the content of feldspar(Eu-rich)minerals in the sediments of the QDNB from west to east gradually decreased.