The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interl...The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.展开更多
Circulating currents in a microgrid increase the power loss of the microgrid, reduce the operational efficiency, as well as affect the power quality of the microgrid. The existing literature is seldom concerned with m...Circulating currents in a microgrid increase the power loss of the microgrid, reduce the operational efficiency, as well as affect the power quality of the microgrid. The existing literature is seldom concerned with methods to suppress the loop currents using fuzzy logic control. In this paper, a method based on fuzzy control of droop coefficients is proposed to suppress the circulating currents inside the microgrid.The method combines fuzzy control with droop control and can achieve the effect of suppressing the circulating currents by adaptively adjusting the droop coefficients to make the power distribution between each subgrid more balanced. To verify the proposed method, simulation is carried out in Matlab/Simulink environment, and the simulation results show that the proposed method is significantly better than the traditional proportional-integral control method. The circulating currents reduce from about 10 A to several nanoamperes, the bus voltage and frequency drops are significantly improved, and the total harmonic distortion rate of the output voltage reduces from 4.66% to 1.06%. In addition, the method used in this paper can be extended to be applied in multiple inverters connected in parallel, and the simulation results show that the method has a good effect on the suppression of circulating currents among multiple inverters.展开更多
This research investigated the outputting circulation current inhibition characteristic which are controlled by the instantaneous feedback voltage in inverter parallel driving of the mine hoist. We established a trans...This research investigated the outputting circulation current inhibition characteristic which are controlled by the instantaneous feedback voltage in inverter parallel driving of the mine hoist. We established a transfer function of the parallel inverters controlled by the close-loop adjustment of instantaneous voltage feedback. The influence of the parameters of the close-loop feedback circuit to the inhibition effects to the outputting circulation current is observed. After analyzing the circulating current inhibition characteristics, the proportion integration (PI) controller is introduced into the close-loop adjustment by instantaneous voltage feedback. The characteristics equation is gained to determine the PI parameters by drawing the Bode plots. The inhibition effects of the proposed controller are examined by the established simulation model of parallel inverter system. The harmonic distortion rate at the outputting voltage frequency value of 4, 10, 20, 41 and 50 Hz, are all lower than 2.32 % by the instantaneous outputting voltage feedback.展开更多
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli...The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400...This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.展开更多
This paper analyzes the circulating current which is produced by HT-7Usuperconducting toroidal power supply-two sets of two-reverse-star converter with aninterphase-reactor in parallel running on the basis of the outp...This paper analyzes the circulating current which is produced by HT-7Usuperconducting toroidal power supply-two sets of two-reverse-star converter with aninterphase-reactor in parallel running on the basis of the output voltage mathematical equation ofthree-phase semi-wave converter circuit. A new idea of omitting interphase-reactor between twoconverters is proposed, and the parameter design of interphase-reactor of HT-7 toroidal power supplyis presented. Simulated results demonstrate the validity of this new project.展开更多
A modular-parallel IPT system with multi-inverters is proposed to enhance power capacity and expansibility for primary power equipment.In order to balance the actual output power of each inverter,a control strategy is...A modular-parallel IPT system with multi-inverters is proposed to enhance power capacity and expansibility for primary power equipment.In order to balance the actual output power of each inverter,a control strategy is designed to minimize circulating-current and equalize output current.In the process of circulating current suppression,current could be decoupled into the following two parts through a d-q synchronous rotating frame:virtual active and reactive current.Then,the above two virtual current components can be adjusted by PWM and PPM.A close-loop control method based on master-slave scheme is proposed to improve the scalability for a practical IPT system,and an impedance matching and its ZCS method is proposed to avoid detuning caused by a change of the number of modules.Finally,an IPT experiment platform with 3-parallel modules is established to verify availability of the proposed control methods.As shown in the experiment,circulating current of the prototype can be reduced from 2.6 A to 0.3 A,and the difference of output power of each module is less than 1%when deviation of the input DC voltage,the delay of driving signals,and the resonant inductance is 10%,respectively.The overall efficiency of the modular IPT system is up to 92.5%at 3.3 kW.展开更多
The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and ...The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and an inductor.Due to its parameter inaccuracy,component aging,and so on,the component parameter in different arms of the MMC may be different,which may cause circulating current in the MMC-HVDC transmission system,and result in current deterioration,power losses,and electromagnetic interference,etc.In this paper,the circulating current suppressing(CCS)in the MMC-HVDC system,due to asymmetric arm impedance,is analyzed.Based on the mathematical analysis,a method of using an auxiliary circuit is proposed for the MMC to realize the CCS and improve the performance of the MMC-HVDC system.Simulation studies are conducted with PSCAD/EMTDC in the HVDC system,which confirms the feasibility of the proposed method.展开更多
Power loss management is one of the most significant challenges for reliability improvement of modular multilevel converters(MMCs).In the MMC,the bottom switch/diode in each submodule(SM)normally takes the maximum pow...Power loss management is one of the most significant challenges for reliability improvement of modular multilevel converters(MMCs).In the MMC,the bottom switch/diode in each submodule(SM)normally takes the maximum power loss.In this paper,a power loss optimization control(PLOC)for MMCs is proposed,where the maximum power losses in the bottom switch/diode of each SM can be effectively reduced through injecting optimum second-order harmonic current into the circulating current of MMCs,and accordingly the reliability of MMCs can be improved by the proposed PLOC.Simulation results with PSCAD software and experimental results with a 1 kW MMC platform are provided to confirm the validity of the proposed PLOC for MMCs.展开更多
We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to ...We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to the zero-sequence current compensation,the circulating current char-acteristics of 3P4W MMC-DSTATCOM are different from conventional MMCs.Moreover,the distinct working principle of IMMC would affect the features of split capacitor voltage.The decoupled positive-,negative-and zero-sequence second-order and DC components of the circulating current are deduced explicitly.Two proportional-integral controllers with dual dq transformation are employed to suppress the positive-and negative-sequence components of second-order circulating current,while quasi proportional-resonance controller is designed to eliminate the zero-sequence component.Besides,the phenomenon of the unbalanced split capacitor voltages is revealed,and fast-tracking balancing method by controlling zero-sequence current flowing through the split capacitors is provided.Digital simulation results verify the accuracy of the analysis and the feasibility of the suppression methods.展开更多
Multi-paralleled bidirectional power converters(BPCs)are commonly used to improve the power capacity and reliability in an AC/DC hybrid microgrid.However,circulating current through multi-BPCs has been one of the chal...Multi-paralleled bidirectional power converters(BPCs)are commonly used to improve the power capacity and reliability in an AC/DC hybrid microgrid.However,circulating current through multi-BPCs has been one of the challenges and it can be aggravated in the presence of non-ideal operating conditions,such as unbalanced AC voltages,and the mismatch of hardware parameters.In order to suppress the circulating current,this paper proposes a distributed method based on adaptive virtual impedance,which also employs positive sequence power droop control and voltage deviation compensation control.The traditional positive sequence power droop control is adopted to only regulate the positive components of the BPCs output voltage.The negative sequence power term is fed to an adaptive virtual impedance generator to modify the damping characteristics of the BPCs.Also,an adaptive virtual impedance-based voltage deviation compensation method is proposed to recover the fluctuated output voltage of the BPCs due to droop action and the power fluctuations.The fully distributed regulation of adaptive virtual impedance enables the load power to be shared accurately among BPC modules and thus the circulating current can be effectively suppressed.The proposed control strategy does not require an additional communication system and the precise parameters of hardware equipment and line impedance.Furthermore,the effectiveness of the proposed method is verified by the experimental results.展开更多
Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not re...Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not reflect the local electromagnetic field distribution and difficulty that overlaps easily exist in solid modeling process of stator transposition bars, a simplified physical model of transposition bars is established. A three-dimensional(3-D) numerical method for circulating current in stator transposition bars of large water-cooled turbo-generators is investigated, which is combined with field-circuit coupling method. Taking stator bars less than 540° transposition with void model of a 600-MW water-cooled turbo-generator as the research object, the magnetic flux density distribution, current density distribution and circulating current distribution of transposition strands are obtained by numerical calculation. Compared with calculation results of the improved analytical algorithm, the correctness of the numerical calculation for circulating current is demonstrated, the calculation value difference for the maximum current of strands is obtained. The numerical calculation for circulating current will provide an appropriate basis for the reasonable calculation of local overheating of stator transposition bars and the design of safety margin for turbo-generators.展开更多
Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in...Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in coastal areas, understanding the behavior of the sea environment becomes crucial. In this study, we delve into the generation and movement of marine currents as well as the retention time and water age within the waters of Pagasitikos Sea inlet, Greece, through numerical simulation of hydrodynamic characteristics. The main examined points of the understudy region are the area of the port of Volos, the Trikeri channel where the ingress and egress of water from the Gulf takes place and the exchange of seawater through circulation of the Pagasitikos Gulf with the North Evian Gulf. In order to evaluate the results, they were compared with real field measurements and with simulation on a laboratory dummy of the same area. The computational simulation was performed with the ELCOM 2.2 numerical modeling tool and the AEM3D latest version and the main factors simulated are the tide, the consequence that Coriolis force, boundary conditions, the topography and bottom geometry of the bay and the actual meteorological conditions of a whole year.展开更多
Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span&g...Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.展开更多
In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched v...In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.展开更多
Internal solitary waves(ISWs)have considerable energy to drive the mixing of water masses in the Sulu Sea.The propagation speed is one of the critical parameters in quantifying the energy budget of the ISWs.We collect...Internal solitary waves(ISWs)have considerable energy to drive the mixing of water masses in the Sulu Sea.The propagation speed is one of the critical parameters in quantifying the energy budget of the ISWs.We collected 1354 groups of ISWs’speeds from tandem satellite remote sensing images with temporal intervals shorter than 25 min and analyzed their spatial and multi-scale temporal variations in the Sulu Sea.We found that water depth plays an important role in modulating the spatial variation of wave speeds,which increase exponentially with water depth with a power of 0.26.Tidal currents,ocean stratification,background circulation,and climate affect the temporal variations of wave speeds from days to months or years.The fortnightly spring/neap tidal currents cause daily variations of wave speeds up to 40%by modulating the ISW amplitudes.In addition to the well-accepted results that monthly variations of wave speeds are related to density stratification,we found that enhanced stratification increases wave speeds,and the background circulation leads to a maximum decrease of 0.27 m/s in the linear counterparts of wave speed.Moreover,the averaged wave speed collected in October is lower than the corresponding linear one possibly due to some unknown dynamical processes or underestimation of background current.As for the interannual variations,we show that wave speed increases in La Niña years and decreases in El Niño years as a result of the climatic modulation on the depth of the maximum value of buoyancy frequency.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
The influence of the Kuroshio on neighboring Chinese seas and the Ryukyu Current is a very important subject of interest in physical oceanography. To deeply explain the research progress made by Chinese scientists fro...The influence of the Kuroshio on neighboring Chinese seas and the Ryukyu Current is a very important subject of interest in physical oceanography. To deeply explain the research progress made by Chinese scientists from July2010 to May 2015, the following three aspects are reviewed in this paper. The first concerns the Kuroshio intrusion into the South China Sea(SCS) and its circulation around the Luzon Strait. There are two very important points to be explained: the seasonal and inter-annual variation of the Kuroshio intrusion and the mechanisms of the Kuroshio intrusion and the influence of the Kuroshio on currents in the Luzon Strait and circulation in the northern SCS. The second concerns the variability of the Kuroshio and its interaction with the East China Sea(ECS). There are following four interesting topics to be explained: an overview of studies on the Kuroshio in the ECS; the Kuroshio intrusion into the ECS, water exchange, and dynamic impacts; the downstream increase of nutrient transport by the Kuroshio; and the application of satellite remote sensing on terrestrial material transport by the Kuroshio intrusion into the ECS. Third, the interaction between the Ryukyu Current and Kuroshio in the ECS are also discussed. Finally, the main results are summarized and areas of further study are simply discussed.展开更多
In urban power networks,a common practice is to bond numerous high-voltage cable circuits to a single grounding grid located in underground tunnels,primarily for reasons of installation convenience.In these situations...In urban power networks,a common practice is to bond numerous high-voltage cable circuits to a single grounding grid located in underground tunnels,primarily for reasons of installation convenience.In these situations,excessively high levels of sheath currents were often detected during routine inspections,but no electrical faults were found to be responsible.Previous publications ignored the currents flowing through the shared grounding points into the closed sheath loops of different circuits.In this paper,a mathematical model is established for the current circulating among sheath loops of different circuits,and the factors influencing the circulating current were analysed.The abnormal excessive sheath current is demonstrated to be an increase in the circulating current due to the combined effect of electromagnetic coupling and the shared grounding grid.The circulating current depends on the induced voltages which,in turn,depends on the cable layouts and load currents.The effects of these factors are evaluated in various scenarios.The increase of the circulating current is verified in a field case where four electrically healthy cable circuits sharing the same grounding points were found to have abnormal excessive sheath currents.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51977046)Wuxi University Research Start-up Fund for Introduced Talent(2022r021).
文摘The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.
基金Foundation items:National Natural Science Foundation of China(No.62303107)Fundamental Research Funds for the Central Universities,China(Nos.2232022G-09 and 2232021D-38)Shanghai Sailing Program,China(No.21YF1400100)。
文摘Circulating currents in a microgrid increase the power loss of the microgrid, reduce the operational efficiency, as well as affect the power quality of the microgrid. The existing literature is seldom concerned with methods to suppress the loop currents using fuzzy logic control. In this paper, a method based on fuzzy control of droop coefficients is proposed to suppress the circulating currents inside the microgrid.The method combines fuzzy control with droop control and can achieve the effect of suppressing the circulating currents by adaptively adjusting the droop coefficients to make the power distribution between each subgrid more balanced. To verify the proposed method, simulation is carried out in Matlab/Simulink environment, and the simulation results show that the proposed method is significantly better than the traditional proportional-integral control method. The circulating currents reduce from about 10 A to several nanoamperes, the bus voltage and frequency drops are significantly improved, and the total harmonic distortion rate of the output voltage reduces from 4.66% to 1.06%. In addition, the method used in this paper can be extended to be applied in multiple inverters connected in parallel, and the simulation results show that the method has a good effect on the suppression of circulating currents among multiple inverters.
文摘This research investigated the outputting circulation current inhibition characteristic which are controlled by the instantaneous feedback voltage in inverter parallel driving of the mine hoist. We established a transfer function of the parallel inverters controlled by the close-loop adjustment of instantaneous voltage feedback. The influence of the parameters of the close-loop feedback circuit to the inhibition effects to the outputting circulation current is observed. After analyzing the circulating current inhibition characteristics, the proportion integration (PI) controller is introduced into the close-loop adjustment by instantaneous voltage feedback. The characteristics equation is gained to determine the PI parameters by drawing the Bode plots. The inhibition effects of the proposed controller are examined by the established simulation model of parallel inverter system. The harmonic distortion rate at the outputting voltage frequency value of 4, 10, 20, 41 and 50 Hz, are all lower than 2.32 % by the instantaneous outputting voltage feedback.
基金This work was partially supported by the National Natural Science Foundation of China(11847104)General Program of National Natural Science Foundation of China(51977124)+2 种基金Shandong Natural Science Foundation(ZR2019QEE001)Natural Science Foundation of Jiangsu Province(BK20190204)National Distinguished Expert(Youth Talent)Program of China(31390089963058)。
文摘The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金supported by the Natural Science Foundation for Young Scientists of Shanxi Province,China(No.52007154).
文摘This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.
基金The project supported by the National Meg-Science Engineering Project of the Chinese Government
文摘This paper analyzes the circulating current which is produced by HT-7Usuperconducting toroidal power supply-two sets of two-reverse-star converter with aninterphase-reactor in parallel running on the basis of the output voltage mathematical equation ofthree-phase semi-wave converter circuit. A new idea of omitting interphase-reactor between twoconverters is proposed, and the parameter design of interphase-reactor of HT-7 toroidal power supplyis presented. Simulated results demonstrate the validity of this new project.
文摘A modular-parallel IPT system with multi-inverters is proposed to enhance power capacity and expansibility for primary power equipment.In order to balance the actual output power of each inverter,a control strategy is designed to minimize circulating-current and equalize output current.In the process of circulating current suppression,current could be decoupled into the following two parts through a d-q synchronous rotating frame:virtual active and reactive current.Then,the above two virtual current components can be adjusted by PWM and PPM.A close-loop control method based on master-slave scheme is proposed to improve the scalability for a practical IPT system,and an impedance matching and its ZCS method is proposed to avoid detuning caused by a change of the number of modules.Finally,an IPT experiment platform with 3-parallel modules is established to verify availability of the proposed control methods.As shown in the experiment,circulating current of the prototype can be reduced from 2.6 A to 0.3 A,and the difference of output power of each module is less than 1%when deviation of the input DC voltage,the delay of driving signals,and the resonant inductance is 10%,respectively.The overall efficiency of the modular IPT system is up to 92.5%at 3.3 kW.
基金This work was supported by the Science and Technology Program of the State Grid Corporation of China(Grant No.5100-201999330A-0-0-00).
文摘The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and an inductor.Due to its parameter inaccuracy,component aging,and so on,the component parameter in different arms of the MMC may be different,which may cause circulating current in the MMC-HVDC transmission system,and result in current deterioration,power losses,and electromagnetic interference,etc.In this paper,the circulating current suppressing(CCS)in the MMC-HVDC system,due to asymmetric arm impedance,is analyzed.Based on the mathematical analysis,a method of using an auxiliary circuit is proposed for the MMC to realize the CCS and improve the performance of the MMC-HVDC system.Simulation studies are conducted with PSCAD/EMTDC in the HVDC system,which confirms the feasibility of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant No.61873062in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20180395in part by the Six Talent Peaks Project of Jiangsu Province under Grant No.GDZB-002.
文摘Power loss management is one of the most significant challenges for reliability improvement of modular multilevel converters(MMCs).In the MMC,the bottom switch/diode in each submodule(SM)normally takes the maximum power loss.In this paper,a power loss optimization control(PLOC)for MMCs is proposed,where the maximum power losses in the bottom switch/diode of each SM can be effectively reduced through injecting optimum second-order harmonic current into the circulating current of MMCs,and accordingly the reliability of MMCs can be improved by the proposed PLOC.Simulation results with PSCAD software and experimental results with a 1 kW MMC platform are provided to confirm the validity of the proposed PLOC for MMCs.
基金This work was supported in part by the National Natural Science Foundation of China(No.51807073).
文摘We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to the zero-sequence current compensation,the circulating current char-acteristics of 3P4W MMC-DSTATCOM are different from conventional MMCs.Moreover,the distinct working principle of IMMC would affect the features of split capacitor voltage.The decoupled positive-,negative-and zero-sequence second-order and DC components of the circulating current are deduced explicitly.Two proportional-integral controllers with dual dq transformation are employed to suppress the positive-and negative-sequence components of second-order circulating current,while quasi proportional-resonance controller is designed to eliminate the zero-sequence component.Besides,the phenomenon of the unbalanced split capacitor voltages is revealed,and fast-tracking balancing method by controlling zero-sequence current flowing through the split capacitors is provided.Digital simulation results verify the accuracy of the analysis and the feasibility of the suppression methods.
基金This work was supported in part by the National Natural Science Foundation of China(51807130)the National key research and development program of China(2018YFB0904700)+1 种基金the Major Science and Technology Projects in Shanxi Province(20181102028)the Postgraduate Education Innovation Project of Shanxi Province(2019BY048)。
文摘Multi-paralleled bidirectional power converters(BPCs)are commonly used to improve the power capacity and reliability in an AC/DC hybrid microgrid.However,circulating current through multi-BPCs has been one of the challenges and it can be aggravated in the presence of non-ideal operating conditions,such as unbalanced AC voltages,and the mismatch of hardware parameters.In order to suppress the circulating current,this paper proposes a distributed method based on adaptive virtual impedance,which also employs positive sequence power droop control and voltage deviation compensation control.The traditional positive sequence power droop control is adopted to only regulate the positive components of the BPCs output voltage.The negative sequence power term is fed to an adaptive virtual impedance generator to modify the damping characteristics of the BPCs.Also,an adaptive virtual impedance-based voltage deviation compensation method is proposed to recover the fluctuated output voltage of the BPCs due to droop action and the power fluctuations.The fully distributed regulation of adaptive virtual impedance enables the load power to be shared accurately among BPC modules and thus the circulating current can be effectively suppressed.The proposed control strategy does not require an additional communication system and the precise parameters of hardware equipment and line impedance.Furthermore,the effectiveness of the proposed method is verified by the experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.51477038)
文摘Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not reflect the local electromagnetic field distribution and difficulty that overlaps easily exist in solid modeling process of stator transposition bars, a simplified physical model of transposition bars is established. A three-dimensional(3-D) numerical method for circulating current in stator transposition bars of large water-cooled turbo-generators is investigated, which is combined with field-circuit coupling method. Taking stator bars less than 540° transposition with void model of a 600-MW water-cooled turbo-generator as the research object, the magnetic flux density distribution, current density distribution and circulating current distribution of transposition strands are obtained by numerical calculation. Compared with calculation results of the improved analytical algorithm, the correctness of the numerical calculation for circulating current is demonstrated, the calculation value difference for the maximum current of strands is obtained. The numerical calculation for circulating current will provide an appropriate basis for the reasonable calculation of local overheating of stator transposition bars and the design of safety margin for turbo-generators.
文摘Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in coastal areas, understanding the behavior of the sea environment becomes crucial. In this study, we delve into the generation and movement of marine currents as well as the retention time and water age within the waters of Pagasitikos Sea inlet, Greece, through numerical simulation of hydrodynamic characteristics. The main examined points of the understudy region are the area of the port of Volos, the Trikeri channel where the ingress and egress of water from the Gulf takes place and the exchange of seawater through circulation of the Pagasitikos Gulf with the North Evian Gulf. In order to evaluate the results, they were compared with real field measurements and with simulation on a laboratory dummy of the same area. The computational simulation was performed with the ELCOM 2.2 numerical modeling tool and the AEM3D latest version and the main factors simulated are the tide, the consequence that Coriolis force, boundary conditions, the topography and bottom geometry of the bay and the actual meteorological conditions of a whole year.
文摘Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.
文摘In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.
基金Supported by the National Natural Science Foundation of China(Nos.U23A2032,42006193)supported by the Hainan Provincial Excellent Talent Team Project(Space Observation of Deep-sea)。
文摘Internal solitary waves(ISWs)have considerable energy to drive the mixing of water masses in the Sulu Sea.The propagation speed is one of the critical parameters in quantifying the energy budget of the ISWs.We collected 1354 groups of ISWs’speeds from tandem satellite remote sensing images with temporal intervals shorter than 25 min and analyzed their spatial and multi-scale temporal variations in the Sulu Sea.We found that water depth plays an important role in modulating the spatial variation of wave speeds,which increase exponentially with water depth with a power of 0.26.Tidal currents,ocean stratification,background circulation,and climate affect the temporal variations of wave speeds from days to months or years.The fortnightly spring/neap tidal currents cause daily variations of wave speeds up to 40%by modulating the ISW amplitudes.In addition to the well-accepted results that monthly variations of wave speeds are related to density stratification,we found that enhanced stratification increases wave speeds,and the background circulation leads to a maximum decrease of 0.27 m/s in the linear counterparts of wave speed.Moreover,the averaged wave speed collected in October is lower than the corresponding linear one possibly due to some unknown dynamical processes or underestimation of background current.As for the interannual variations,we show that wave speed increases in La Niña years and decreases in El Niño years as a result of the climatic modulation on the depth of the maximum value of buoyancy frequency.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
基金The National Basic Research Program of China under contract No.2014CB441501the National Natural Science Foundation of China under contract Nos 41576001,41176021,41176020,91128204,41276031,41406021,41276095 and 41321004+1 种基金the fund from the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography under contract No.SOEDZZ1501the National Program on Global Change and Air-Sea Interaction under contract No.GASI-03-01-01-02
文摘The influence of the Kuroshio on neighboring Chinese seas and the Ryukyu Current is a very important subject of interest in physical oceanography. To deeply explain the research progress made by Chinese scientists from July2010 to May 2015, the following three aspects are reviewed in this paper. The first concerns the Kuroshio intrusion into the South China Sea(SCS) and its circulation around the Luzon Strait. There are two very important points to be explained: the seasonal and inter-annual variation of the Kuroshio intrusion and the mechanisms of the Kuroshio intrusion and the influence of the Kuroshio on currents in the Luzon Strait and circulation in the northern SCS. The second concerns the variability of the Kuroshio and its interaction with the East China Sea(ECS). There are following four interesting topics to be explained: an overview of studies on the Kuroshio in the ECS; the Kuroshio intrusion into the ECS, water exchange, and dynamic impacts; the downstream increase of nutrient transport by the Kuroshio; and the application of satellite remote sensing on terrestrial material transport by the Kuroshio intrusion into the ECS. Third, the interaction between the Ryukyu Current and Kuroshio in the ECS are also discussed. Finally, the main results are summarized and areas of further study are simply discussed.
基金Project of State Grid Corporation of China,Grant/Award Number:5700-202118195A-0-0-00。
文摘In urban power networks,a common practice is to bond numerous high-voltage cable circuits to a single grounding grid located in underground tunnels,primarily for reasons of installation convenience.In these situations,excessively high levels of sheath currents were often detected during routine inspections,but no electrical faults were found to be responsible.Previous publications ignored the currents flowing through the shared grounding points into the closed sheath loops of different circuits.In this paper,a mathematical model is established for the current circulating among sheath loops of different circuits,and the factors influencing the circulating current were analysed.The abnormal excessive sheath current is demonstrated to be an increase in the circulating current due to the combined effect of electromagnetic coupling and the shared grounding grid.The circulating current depends on the induced voltages which,in turn,depends on the cable layouts and load currents.The effects of these factors are evaluated in various scenarios.The increase of the circulating current is verified in a field case where four electrically healthy cable circuits sharing the same grounding points were found to have abnormal excessive sheath currents.