In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder wit...In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder with an internal crack, and the problem is reduced to -a set of mixed-type integral equation with generalized Cauchy-kernel. Then, by using the integration formula of Gauss-Jacobi, the numerical method is established and several numerical examples are calculated. The torsional rigidity and the stress intensity factors are obtained. The results of these examples fit the results obtained by the previous papers better.展开更多
Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled diff...Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled differential equations with variable coefficients by use of the Mindlin plate theory, is very difficult to be studied analytically. In this paper, a novel analytical method is proposed to reduce such governing equations for circular plates to a pair of uncoupled and easily solvable differential equations of the Sturm-Liouville type. There are two important parameters in the reduced equations. One describes the radial variations of the translational inertia and fiexural rigidity with the consideration of the effect of Poisson's ratio. The other reflects the comprehensive effect of the rotatory inertia and shear deformation. The Heun-type equations, recently well-known in physics, are introduced here to solve the flexural free vibration of circular plates analytically, and two basic differential formulae for the local Heun-type functions are discovered for the first time, which will be of great value in enriching the theory of Heun-type differential equations.展开更多
A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most...A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.展开更多
基金P.H.D.Foundation of the State Education Commision of China
文摘In this paper the writer uses Muskhelishvili single-layer potential function solution and single crack solution for the torsion problem of a circular cylinder to discuss the torsion problem of a composite cylinder with an internal crack, and the problem is reduced to -a set of mixed-type integral equation with generalized Cauchy-kernel. Then, by using the integration formula of Gauss-Jacobi, the numerical method is established and several numerical examples are calculated. The torsional rigidity and the stress intensity factors are obtained. The results of these examples fit the results obtained by the previous papers better.
基金Project supported by the National Natural Science Foundation of China(Nos.11402133,11620162,11321202,and 11532001)
文摘Circular plates with radially varying thickness, stiffness, and density are widely used for the structural optimization in engineering. The axisymmetric flexural free vibration of such plates, governed by coupled differential equations with variable coefficients by use of the Mindlin plate theory, is very difficult to be studied analytically. In this paper, a novel analytical method is proposed to reduce such governing equations for circular plates to a pair of uncoupled and easily solvable differential equations of the Sturm-Liouville type. There are two important parameters in the reduced equations. One describes the radial variations of the translational inertia and fiexural rigidity with the consideration of the effect of Poisson's ratio. The other reflects the comprehensive effect of the rotatory inertia and shear deformation. The Heun-type equations, recently well-known in physics, are introduced here to solve the flexural free vibration of circular plates analytically, and two basic differential formulae for the local Heun-type functions are discovered for the first time, which will be of great value in enriching the theory of Heun-type differential equations.
文摘A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.