The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a we...The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a weighted residual method in space. The stable three-step scheme is applied to the momentum equations in the time integration. The numerical model is firstly applied to the computation of the lid-driven cavity flow for its validation. The computed results agree well with the measured data and other numerical results. Then, it is used to simulate the viscous uniform and shear flow over a circular cylinder for Reynolds numbers from 100 to 1000. The transient time interval before the vortex shedding occurs is shortened considerably by introduction of artificial perturbation. The computed Strouhal number, drag and lift coefficients agree well with the experimental data. The computation shows that the finite element model can be successfully applied to the viscous flow problem.展开更多
An internal failure mode for a soil-nailed system consists of failure at nail heads,slope facing,nail strength,along groutesoil interface and pullout failure.A better understanding of pullout of soil nail thus becomes...An internal failure mode for a soil-nailed system consists of failure at nail heads,slope facing,nail strength,along groutesoil interface and pullout failure.A better understanding of pullout of soil nail thus becomes important to assess the stability of a soil-nailed system.In the present study,an investigation into the pullout behaviour of soil nail with circular discs along the shaft has been carried out by a threedimensional finite element analysis using Abaqus/Explicit routine.A total of 67 simulations have been performed to accurately predict the pullout behaviour of soil nail.The soil nail under study has circular discs along its shaft varying in numbers from 1 to 4.The pullout of this soil nail in a pullout test box has been simulated with a constant overburden pressure of 20 kPa acting on the nail.The pullout load edisplacement characteristics,stresses around soil nail and failure mechanism during pullout are studied.Variations of dimensionless factors such as normalised pullout load factor and bearing capacity factor have been obtained with different combinations of parameters in terms of relative disc spacing ratio,anchorage length ratio,embedment ratio,diameter ratio and displacement ratio.From the results of analyses,it is found that nail with more circular discs requires higher pullout load.There are critical relative disc spacing ratio and diameter ratio which significantly affect the pullout behaviour of nail.展开更多
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two dimensional Navier Stokes equations is solved ...In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two dimensional Navier Stokes equations is solved numerically with a finite element method. In order to track the moving non linear wave surface boundary, the Navier Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data. Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder. The effects of the KC number and the cylinder depth on the wave forces are studied.展开更多
The BPA eight-chain molecular network model is introduced into the finite element formulation of elastic-plastic large deformation. And then, the tensile deformation localization development of the amorphous glassy ci...The BPA eight-chain molecular network model is introduced into the finite element formulation of elastic-plastic large deformation. And then, the tensile deformation localization development of the amorphous glassy circular polymeric bars (such as polycarbonates) is numerically simulated. The simulated results are compared with experimental ones, and very good consistence between numerical simulation and experiment is obtained, which shows the efficiency of the finite element analysis. Finally, the influences of the microstructure parameter S-ss on tensile neck-propagation and triaxial stress effect are studied.展开更多
文摘The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a weighted residual method in space. The stable three-step scheme is applied to the momentum equations in the time integration. The numerical model is firstly applied to the computation of the lid-driven cavity flow for its validation. The computed results agree well with the measured data and other numerical results. Then, it is used to simulate the viscous uniform and shear flow over a circular cylinder for Reynolds numbers from 100 to 1000. The transient time interval before the vortex shedding occurs is shortened considerably by introduction of artificial perturbation. The computed Strouhal number, drag and lift coefficients agree well with the experimental data. The computation shows that the finite element model can be successfully applied to the viscous flow problem.
文摘An internal failure mode for a soil-nailed system consists of failure at nail heads,slope facing,nail strength,along groutesoil interface and pullout failure.A better understanding of pullout of soil nail thus becomes important to assess the stability of a soil-nailed system.In the present study,an investigation into the pullout behaviour of soil nail with circular discs along the shaft has been carried out by a threedimensional finite element analysis using Abaqus/Explicit routine.A total of 67 simulations have been performed to accurately predict the pullout behaviour of soil nail.The soil nail under study has circular discs along its shaft varying in numbers from 1 to 4.The pullout of this soil nail in a pullout test box has been simulated with a constant overburden pressure of 20 kPa acting on the nail.The pullout load edisplacement characteristics,stresses around soil nail and failure mechanism during pullout are studied.Variations of dimensionless factors such as normalised pullout load factor and bearing capacity factor have been obtained with different combinations of parameters in terms of relative disc spacing ratio,anchorage length ratio,embedment ratio,diameter ratio and displacement ratio.From the results of analyses,it is found that nail with more circular discs requires higher pullout load.There are critical relative disc spacing ratio and diameter ratio which significantly affect the pullout behaviour of nail.
文摘In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two dimensional Navier Stokes equations is solved numerically with a finite element method. In order to track the moving non linear wave surface boundary, the Navier Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data. Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder. The effects of the KC number and the cylinder depth on the wave forces are studied.
文摘The BPA eight-chain molecular network model is introduced into the finite element formulation of elastic-plastic large deformation. And then, the tensile deformation localization development of the amorphous glassy circular polymeric bars (such as polycarbonates) is numerically simulated. The simulated results are compared with experimental ones, and very good consistence between numerical simulation and experiment is obtained, which shows the efficiency of the finite element analysis. Finally, the influences of the microstructure parameter S-ss on tensile neck-propagation and triaxial stress effect are studied.