Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations a...Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems.展开更多
建立了基于低温等离子体(Low temperature plasma)剥蚀系统将固体样品直接引入电感耦合等离子体质谱(ICP-MS)并用于电路板镀层中Au,Ni和Cu的深度分析。此实验中采用介质阻挡放电(DBD)方式产生低温等离子体探针,逐层剥蚀样品表面,由ICPM...建立了基于低温等离子体(Low temperature plasma)剥蚀系统将固体样品直接引入电感耦合等离子体质谱(ICP-MS)并用于电路板镀层中Au,Ni和Cu的深度分析。此实验中采用介质阻挡放电(DBD)方式产生低温等离子体探针,逐层剥蚀样品表面,由ICPMS检测元素信号。对DBD所用放电气体种类、外加电场功率、放电气体流速和采样深度等实验条件进行优化。在优化条件下,应用LTP-ICPMS在30 s内完成电路板镀层(20μm Au/10μm Ni/Cu基底)的逐层剥蚀和深度分析,元素种类和分层顺序与X射线光电子能谱(XPS)相吻合,镀层的分辨率可拓展至微米水平,表明此技术可直接用于固体样品的深度分析。展开更多
部分元等效电路(partial element equivalent circuit,PEEC)是电路设计、集成封装和电磁兼容(electromagnetic compatibility,EMC)分析等领域中强有力的工具。随着导体尺寸和频率的不断增加,有效的剖分方法变得越来越重要,因此必须对PEE...部分元等效电路(partial element equivalent circuit,PEEC)是电路设计、集成封装和电磁兼容(electromagnetic compatibility,EMC)分析等领域中强有力的工具。随着导体尺寸和频率的不断增加,有效的剖分方法变得越来越重要,因此必须对PEEC剖分方法进行系统研究。该文基于导体电流的分布规律,分析现有剖分方法的缺点,确定相等面积不均匀剖分数的计算方法,提出一种基于集肤深度的新型不均匀剖分方法,当频率较高或导体尺寸较大时,只需较少的剖分单元就可得到准确的计算结果,并经实验进行了验证。根据实际情况合理选择剖分方法,会节省大量计算机资源,具有非常重要的意义。展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2024YFB4504101)the National Nat-ural Science Foundation of China(Grant No.22303022)the Anhui Province Innovation Plan for Science and Technology(Grant No.202423r06050002).
文摘Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems.
文摘部分元等效电路(partial element equivalent circuit,PEEC)是电路设计、集成封装和电磁兼容(electromagnetic compatibility,EMC)分析等领域中强有力的工具。随着导体尺寸和频率的不断增加,有效的剖分方法变得越来越重要,因此必须对PEEC剖分方法进行系统研究。该文基于导体电流的分布规律,分析现有剖分方法的缺点,确定相等面积不均匀剖分数的计算方法,提出一种基于集肤深度的新型不均匀剖分方法,当频率较高或导体尺寸较大时,只需较少的剖分单元就可得到准确的计算结果,并经实验进行了验证。根据实际情况合理选择剖分方法,会节省大量计算机资源,具有非常重要的意义。