Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ...Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.展开更多
The characteristics of flow and thrust evolution of an annular Expansion-Deflection(ED)nozzle are numerically investigated under varying backpressure changing rates during ascending and descending trajectories.The obj...The characteristics of flow and thrust evolution of an annular Expansion-Deflection(ED)nozzle are numerically investigated under varying backpressure changing rates during ascending and descending trajectories.The objective is to test the sensitivity of unsteady behaviors of shock waves in the ED nozzle to backpressure changing rate,and to further elucidate the thrust evolution mechanism and mode transition hysteresis.The movement of shock reflection points on the nozzle wall follows two flow mechanisms,namely,shock self-excited oscillations and rapid backpressure changes.A low backpressure changing rate enables shock self-excited oscillations,leading to a reciprocating motion of the shock waves accompanied by thrust oscillations,while a high backpressure changing rate suppresses the shock self-excited oscillations,leading to a unidirectional motion of the wave system on the nozzle shroud wall.A criterion for distinguishing ED nozzle operation modes is proposed,which relies on the loading inflection points of the nozzle pintle base and exhibits a fast and user-friendly feature.A dual-wake mode hysteresis region is defined to quantify the hysteresis in nozzle mode transition,with the span of the region decreasing as the backpressure changing rate slows down.The present work helps in understanding the unsteady flow mechanism and thrust evolution in ED nozzles.展开更多
It is found that the reactor has four types of flow regimes:a,b,c,and d,of which b is desirable inoperation.Therefore it is essential to find the criteria for flow regime transitions.On the basis of momen-tum,energy a...It is found that the reactor has four types of flow regimes:a,b,c,and d,of which b is desirable inoperation.Therefore it is essential to find the criteria for flow regime transitions.On the basis of momen-tum,energy and mass balance principles,theoretical criteria are obtained and agree well with the experi-mental results,which can be expressed展开更多
Bubbling to Jetting Transition is of the outmost importance in metallurgical processes given that the flow regime influences the refining rates, the refractory erosion, and the blockage of injection nozzles. Bubbling ...Bubbling to Jetting Transition is of the outmost importance in metallurgical processes given that the flow regime influences the refining rates, the refractory erosion, and the blockage of injection nozzles. Bubbling to jetting transition during subsonic bottom injection of argon in molten steel is studied here. The effect of the molten steel height, the injection velocity, the nozzle diameter, and the molten steel viscosity on the jet height and the bubbling to jetting transition is numerically analyzed using Computational Fluid Dynamics. Five subsonic argon injection velocities are considered: 5, 25, 50, 100 and 150 m/s. Three values of the metal height are taken into account, namely 1.5 m, 2 m and 2.5 m. Besides, three values of the nozzle diameters are considered: 0.001 m, 0.005 m and 0.01 m. Finally, three values of the molten steel viscosity are supposed: 0.0067, 0.1 and 1 kg/(m<span style="font-family:Verdana;"><span style="white-space:nowrap;">·</span></span><span style="font-family:Verdana;">s). It is observed that for the argon-molten steel system</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the bubbling to jetting transition occurs for an injection velocity less than 25 m/s and that for the range of viscosities considered, the molten steel viscosity does not exert significant influence on the jet height and the bubbling to jetting transition. Due to the jet instability at subsonic velocities</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> a second transition, namely jetting to bubbling, is appreciated</span><span style="font-family:Verdana;">.</span>展开更多
基金supported by the National Natural Science Foundation of China(No.12002102)。
文摘Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.
基金the National Natural Science Foundation of China(No.12002102)。
文摘The characteristics of flow and thrust evolution of an annular Expansion-Deflection(ED)nozzle are numerically investigated under varying backpressure changing rates during ascending and descending trajectories.The objective is to test the sensitivity of unsteady behaviors of shock waves in the ED nozzle to backpressure changing rate,and to further elucidate the thrust evolution mechanism and mode transition hysteresis.The movement of shock reflection points on the nozzle wall follows two flow mechanisms,namely,shock self-excited oscillations and rapid backpressure changes.A low backpressure changing rate enables shock self-excited oscillations,leading to a reciprocating motion of the shock waves accompanied by thrust oscillations,while a high backpressure changing rate suppresses the shock self-excited oscillations,leading to a unidirectional motion of the wave system on the nozzle shroud wall.A criterion for distinguishing ED nozzle operation modes is proposed,which relies on the loading inflection points of the nozzle pintle base and exhibits a fast and user-friendly feature.A dual-wake mode hysteresis region is defined to quantify the hysteresis in nozzle mode transition,with the span of the region decreasing as the backpressure changing rate slows down.The present work helps in understanding the unsteady flow mechanism and thrust evolution in ED nozzles.
文摘It is found that the reactor has four types of flow regimes:a,b,c,and d,of which b is desirable inoperation.Therefore it is essential to find the criteria for flow regime transitions.On the basis of momen-tum,energy and mass balance principles,theoretical criteria are obtained and agree well with the experi-mental results,which can be expressed
文摘Bubbling to Jetting Transition is of the outmost importance in metallurgical processes given that the flow regime influences the refining rates, the refractory erosion, and the blockage of injection nozzles. Bubbling to jetting transition during subsonic bottom injection of argon in molten steel is studied here. The effect of the molten steel height, the injection velocity, the nozzle diameter, and the molten steel viscosity on the jet height and the bubbling to jetting transition is numerically analyzed using Computational Fluid Dynamics. Five subsonic argon injection velocities are considered: 5, 25, 50, 100 and 150 m/s. Three values of the metal height are taken into account, namely 1.5 m, 2 m and 2.5 m. Besides, three values of the nozzle diameters are considered: 0.001 m, 0.005 m and 0.01 m. Finally, three values of the molten steel viscosity are supposed: 0.0067, 0.1 and 1 kg/(m<span style="font-family:Verdana;"><span style="white-space:nowrap;">·</span></span><span style="font-family:Verdana;">s). It is observed that for the argon-molten steel system</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the bubbling to jetting transition occurs for an injection velocity less than 25 m/s and that for the range of viscosities considered, the molten steel viscosity does not exert significant influence on the jet height and the bubbling to jetting transition. Due to the jet instability at subsonic velocities</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> a second transition, namely jetting to bubbling, is appreciated</span><span style="font-family:Verdana;">.</span>