During thewater treatment process,chlorination and ultraviolet(UV)sterilization can modify microplastics(MPs)and alter their physicochemical properties,causing various changes between MPs and other pollutants.In this ...During thewater treatment process,chlorination and ultraviolet(UV)sterilization can modify microplastics(MPs)and alter their physicochemical properties,causing various changes between MPs and other pollutants.In this study,the impact of chlorination and UV modification on the physicochemical properties of polystyrene(PS)and polyvinyl chloride(PVC)were investigated,and the adsorption behavior of pefloxacin(PEF)before and after modificationwas examined.The effect of pH,ionic strength,dissolved organicmatter,heavymetal ions and other water environmental conditions on adsorption behavior was revealed.The results showed that PS had a higher adsorption capacity of PEF than PVC,and the modification increased the presence of O-containing functional groups in the MPs,thereby enhancing the adsorption capacity of both materials.Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period,leading to better adsorption performance of chlorination.The optimal pH for adsorption was found to be 6,and NaCl,sodium alginate and Cu2+would inhibit adsorption to varying degrees,among which the inhibition caused by pH was the strongest.Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs.The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding.The study clarified the effects of modification on the physicochemical properties of MPs,providing reference for subsequent biotoxicity analysis and environmental protection studies.展开更多
With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic ...With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.展开更多
Recovery of rare earth elements(REEs)from bulk Nd-Fe-B scrap by chlorination with NH_(4)Cl as a chlorinating agent has been reported to be an energy efficient and environmentally friendly method.However,the reaction m...Recovery of rare earth elements(REEs)from bulk Nd-Fe-B scrap by chlorination with NH_(4)Cl as a chlorinating agent has been reported to be an energy efficient and environmentally friendly method.However,the reaction mechanism and phase evolution of the low-temperature selective chlorination process of Nd-Fe-B sludge are not clear.In this paper,we systematically investigated the lowtemperature selective chlorination process of Nd-Fe-B sludge with NH4Cl by combining thermokinetic theoretical calculations and experiments,and revealed its reaction mechanism.The phase evolution during chlorination was determined by X-ray diffraction(XRD),scanning electron microscopy(SEM)and ene rgy-dispersive X-ray spectroscopy(EDS)characterization as well as co mputational analysis of the phase stability diagram of the M-O-Cl system.To determine the optimum chlorination conditions,the effects of chlorinating agent dosage,reaction temperature and reaction time on the reaction were investigated.The results show that the rare earth components in Nd-Fe-B sludge are selectively chlorinated to RECl3and the formation of REOCl is avoided in the temperature range of 300-420℃,while the iron components are preferentially oxidized to Fe2O3.The selective chlorination reaction is consistent with the unreacted shrinking core model,and the rate-controlling step of the reaction is the internal diffusion process of NH4Cl through the transition layer of the reactant product to the surface of the Nd-Fe-B sludge.The complete chlorination of REEs is successfully achieved and 99.8%of REEs are selectively extracted into the leaching solution under optimal chlorination conditions(300℃,2.5 times of stoichiometric amount,4 h).展开更多
Benzotriazole(BTA)-based A_(2)-A_1-D-A_1-A_(2)type wide-bandgap(WBG)non-fullerene acceptors(NFAs)have shown promising potential in indoor photovoltaic,and in-depth investigation of their structure-property relationshi...Benzotriazole(BTA)-based A_(2)-A_1-D-A_1-A_(2)type wide-bandgap(WBG)non-fullerene acceptors(NFAs)have shown promising potential in indoor photovoltaic,and in-depth investigation of their structure-property relationship is of great significance.Herein,we explored the chlorination effect of the side chain on the terminals.We introduced Cl atoms into the benzyl side chains in parent BTA5 to synthesize two NFAs,BTA5-Cl with mono-chlorinated benzyl groups and BTA5-2Cl containing bi-chlorinated benzyl groups.We chose D18-Cl with deep-energy levels and strong crystallinity to pair with these three acceptors,affording high photovoltage and photocurrent.With the stepwise chlorination,the open-circuit voltage(V_(OC))values decrease from 1.28,1.22,to 1.20 V,while the corresponding power conversion efficiencies(PCEs)improve from 5.07%,9.15%,to 10.96%.Compared with BTA5-based OSCs,introducing Cl atoms downshifts the energy levels and slightly increases the non-radiative energy loss(0.14<0.17<0.19 e V),resulting in a sequential decrease in VO C.However,more chlorine atom replacements produce more effective exciton dissociation,higher charge transfer,and balanced carrier mobility in the blend films,ultimately achieving better PCEs.This work indicates that chlorination of the benzyl group on the terminals can improve the device's performance,implying good application potential in indoor photovoltaics.展开更多
Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences...Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.展开更多
Chlorination roasting followed by water leaching process was used to extract lithium from lepidolite.The microstructure of the lepidolite and roasted materials were characterized by X-ray diffraction(XRD).Various pa...Chlorination roasting followed by water leaching process was used to extract lithium from lepidolite.The microstructure of the lepidolite and roasted materials were characterized by X-ray diffraction(XRD).Various parameters including chlorination roasting temperature,time,type and amount of chlorinating agents were optimized.The conditional experiments indicate that the best mass ratio of lepidolite to NaCl to CaCl2 is 1:0.6:0.4 during the roasting process.The extraction of lithium reaches peak value of 92.86% at 880 °C,potassium,rubidium,and cesium 88.49%,93.60% and 93.01%,respectively.The XRD result indicates that the major phases of the product after roasting lepidolite with mixture of chlorinating agents(CaCl2 and NaCl) are SiO2,CaF2,KCl,CaSiO3,CaAl2Si2O8,NaCl and NaAlSi3O8.展开更多
Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the mol...Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.展开更多
Traditional culture methods may underestimate the tolerance of microorganisms to disinfectants because of the existence of viable but nonculturable or sublethally injured cells after disinfection.The selection of a st...Traditional culture methods may underestimate the tolerance of microorganisms to disinfectants because of the existence of viable but nonculturable or sublethally injured cells after disinfection.The selection of a strict method is crucial for the evaluation of disinfection performance.The actions of 2 typical disinfectants–ultraviolet(UV)and chlorine–on the fecal indicator Escherichia coli were investigated by the detection of culturability,membrane permeability,metabolic activity,deoxyribonucleic acid(DNA),and messenger ribonucleic acid(m RNA).During UV disinfection,the irreversible damages in the cell membrane and cellular adenosine triphosphate(ATP)were negligible at low UV doses(80 m J/cm^2).However,membrane permeability was damaged at low doses of chlorine(5 mg/L),leading to leakage of cellular ATP.Our study showed that a slight lesion in DNA was detected even at high doses of UV(400 m J/cm^2)and chlorine(5 mg/L)treatments.The decay of m RNA was more rapid than that of DNA.The degradation level of m RNA depended on the choice of target genes.After exposure to 50 m J/cm^2UV dose or 5 mg/L chlorine for30 min,the DNA damage repair function(Rec A m RNA)was inhibited.The m RNA involved in the DNA damage repair function can be a potential indicator of bacterial viability.展开更多
A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roastin...A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.展开更多
Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determini...Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determining an optimal chlorination scheme are the different responses of crops to the chloride added into the soil through chlorination. During two seasons in 2008 and 2009, field experiments were conducted in a solar-heated greenhouse with drip irrigation systems applying secondary sewage effluent to tomato plants to investigate the influences of chlorine injection intervals and levels on plant growth, yield, fruit quality, and emitter clogging. Injection intervals ranging from 2 to 8 wk and injection concentrations ranging 2-50 mg L-1 of free chlorine residual at the end of the laterals were used. For the 2008 experiments, the yield from the treatments of sewage application with chlorination was 7.5% lower than the yield from the treatment of sewage application without chlorination, while the yields for the treatments with and without chlorination were similar for the 2009 experiments. The statistical tests indicated that neither the chlorine injection intervals and concentrations nor the interactions between the two significantly influenced plant height, leaf area, or tomato yield for both years. The qualities of the fruit in response to chlorination were parameter-dependent. Chlorination did not significantly influence the quality of ascorbic acid, soluble sugar, or soluble acids, but the interaction between the chlorine injection interval and the chlorine concentration significantly influenced the levels of soluble solids. It was also confirmed that chlorination was an effective method for reducing biological clogging. These results suggested that chlorination is safe for a crop that has a moderate sensitivity to chlorine, like tomato, and can maintain a high level of performance in drip irrigation systems applying sewage effluent.展开更多
Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the format...Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.展开更多
The effects of ferric ion, pH, and bromide on the formation and distribution of disinfection byproducts (DBPs) during chlorination were studied. Two raw water samples from Huangpu River and Yangtze River, two typica...The effects of ferric ion, pH, and bromide on the formation and distribution of disinfection byproducts (DBPs) during chlorination were studied. Two raw water samples from Huangpu River and Yangtze River, two typical drinking water sources of Shanghai, were used for the investigation. Compared with the samples from Huangpu River, the raw water samples from Yangtze River had lower content of total organic carbon (TOC) and ferric ions, but higher bromide concentrations. Under controlled chlorination conditions, four trihalomethanes (THMs), nine haloacetic acids (HAAs), total organic halogen (TOX) and its halogen species fractions, including total organic chlorine (TOC1) and total organic bromide (TOBr), were determined. The results showed that co-existent ferric and bromide ions significantly promoted the formation of total THMs and HAAs for both raw water samples. Higher concentration of bromide ions significantly changed the speciation of the formed THMs and HAAs. There was an obvious shift to brominated species, which might result in a more adverse influence on the safety of drinking water. The results also indicated that high levels of bromide ions in raw water samples produced higher percentages of unknown TOBr.展开更多
An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be eff...An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.展开更多
Various disinfection byproducts(DBPs) form during the process of chlorination disinfection,posing potential threats to drinking water safety and human health. Sulfamethazine(SMT),the most commonly used and frequently ...Various disinfection byproducts(DBPs) form during the process of chlorination disinfection,posing potential threats to drinking water safety and human health. Sulfamethazine(SMT),the most commonly used and frequently detected veterinary antibiotic, was investigated in detail with regard to its transformation and kinetics in reactions with free available chlorine(FAC). Using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry, several DBPs were identified based on different confidence levels, and a variety of reaction types, including desulfonation, S–N cleavage, hydroxylation, and chlorine substitution, were proposed. The kinetic experiments indicated that the reaction rate was FAC-and pH-dependent, and SMT exhibits low reactivity toward FAC in alkaline conditions. The DBPs exhibited a much higher acute toxicity than SMT, as estimated by quantitative structure activity relationship models. More importantly, we observed that the FAC-treated SMT reaction solution might increase the genotoxic potential due to the generation of DBPs. This investigation provides substantial new details related to the transformation of SMT in the chlorination disinfection process.展开更多
The chlorination-volatilization process has been adopted to make full use of gold-bearing and iron-rich pyrite cinder. However, problems of low recovery rate, pulverization of pellets, and ring formation have been enc...The chlorination-volatilization process has been adopted to make full use of gold-bearing and iron-rich pyrite cinder. However, problems of low recovery rate, pulverization of pellets, and ring formation have been encountered during the industrialization of this process. The effects of various parameters on the volatilization rates of valuable metals and on the compressive strength of roasted pellets were investigated in this paper. The parameters include the CaCl_2 dosage, heating temperature, and holding time. The results show that heating temperature is the most important parameter for the recovery of target metals. More CaCl_2 was needed for the recovery of zinc than for the recovery of gold, silver, and lead. CaCl_2 started to react with sulfides/SO_2/SiO_2 at temperatures below the melting point of CaCl_2 to generate Cl_2/HCl. Gaseous CaCl_2 was formed at higher temperatures and could react with any of the components. The compressive strength of roasted CaCl_2-bearing pellets first decreased slowly with increasing temperature at temperatures lower than 873 K, which could result in the pulverization of pellets during heating. Their compressive strength increased dramatically with increasing temperature at temperatures greater than 1273 K. Certain quantities of CaCl_2 and Fe(Ⅱ) could improve the compressive strength of the roasted pellets; however, the addition of excessive CaCl_2 decreased the compressive strength of pellets.展开更多
For the system of water samples collected from Yangtze River,the effects of seasonal variation and Fe(III) concentrations on the formation and distribution of trihalomethanes (THMs) during chlorination have been i...For the system of water samples collected from Yangtze River,the effects of seasonal variation and Fe(III) concentrations on the formation and distribution of trihalomethanes (THMs) during chlorination have been investigated.The corresponding lifetime cancer risk of the formed THMs to human beings was estimated using the parameters and procedure issued by the US EPA.The results indicated that the average concentration of THMs (100.81 μg/L) in spring was significantly higher than that in other seasons,which was related to the higher bromide ion concentration resulted from the intrusion of tidal saltwater.The total cancer risk in spring reached 8.23 × 10 ?5 and 8.86 × 10 ?5 for males and females,respectively,which were about two times of those in summer under the experimental conditions.Furthermore,it was found that the presence of Fe(III) resulted in the increased level of THMs and greater cancer risk from exposure to humans.Under weak basic conditions,about 10% of the increment of THMs from the water samples in spring was found in the presence of 0.5 mg/L Fe(III) compared with the situation without Fe(III).More attention should be given to the effect of the coexistence of Fe(III) and bromide ions on the risk assessment of human intake of THMs from drinking water should be paid more attention,especially in the coastland and estuaries.展开更多
Algal blooms and wastewater effluents can introduce algal organic matter(AOM) and effluent organic matter(Ef OM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of h...Algal blooms and wastewater effluents can introduce algal organic matter(AOM) and effluent organic matter(Ef OM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts(DBPs) during chlorination and chloramination from various types of dissolved organic matter(DOM, e.g., natural organic matter(NOM), AOM, and Ef OM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes(THMs) and haloacetic acids(HAAs) was observed in NOM than AOM and Ef OM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes(HALs), haloacetonitriles(HANs) and haloacetamides(HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor(BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance(SUVA) increased. AOM favored the formation of iodinated THMs(I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor(ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.展开更多
The aim is to remove copper from a pyrite cinder by optimizing the chlorination roasting process using re-sponse surface methodology (RSM) and the reaction mechanism of chlorination roasting based on thermodynamic c...The aim is to remove copper from a pyrite cinder by optimizing the chlorination roasting process using re-sponse surface methodology (RSM) and the reaction mechanism of chlorination roasting based on thermodynamic calculation was discussed. A quadratic model was suggested by RSM to correlate the key parameters, namely, dos-age of chlorinating agent, roasting temperature and roasting time to the copper volatilization ratio. The results indi- cate that the model is well consistent with the experimental data at a correlation coefficient (R2) of 0.95, and the dosage of chlorinating agent and roasting temperature both have significant effects on the copper volatilization ratio. However, a roasting temperature exceeding 1170 ~C decreases the volatilization ratio. The optimum conditions for removing copper from the cinder were identified as chlorinating agent dosage at 5%, roasting temperature at i155.10 ℃ and roasting time of 10 min; under Such a conditiom a copper volatilization ratid of 95.16% Was a- chieved from the cinder. Thermodynamic calculation shows that SiO2 in the pellet plays a key role in the chlorine re-lease from calcium chloride, and the chlorine release reactions cannot occur without it.展开更多
Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine d...Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 rag/L, free chlorine dosage from 0.30 to 1.31 rag/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro- 1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.展开更多
基金supported by the Shanxi Scholarship Council of China(No.2023-054)the Applied Basic Research Project of Shanxi Province,China(No.20210302123121)the National Natural Science Foundation of China(No.52170045).
文摘During thewater treatment process,chlorination and ultraviolet(UV)sterilization can modify microplastics(MPs)and alter their physicochemical properties,causing various changes between MPs and other pollutants.In this study,the impact of chlorination and UV modification on the physicochemical properties of polystyrene(PS)and polyvinyl chloride(PVC)were investigated,and the adsorption behavior of pefloxacin(PEF)before and after modificationwas examined.The effect of pH,ionic strength,dissolved organicmatter,heavymetal ions and other water environmental conditions on adsorption behavior was revealed.The results showed that PS had a higher adsorption capacity of PEF than PVC,and the modification increased the presence of O-containing functional groups in the MPs,thereby enhancing the adsorption capacity of both materials.Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period,leading to better adsorption performance of chlorination.The optimal pH for adsorption was found to be 6,and NaCl,sodium alginate and Cu2+would inhibit adsorption to varying degrees,among which the inhibition caused by pH was the strongest.Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs.The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding.The study clarified the effects of modification on the physicochemical properties of MPs,providing reference for subsequent biotoxicity analysis and environmental protection studies.
基金financially supported by the National Natural Science Foundation of China(No.52204310)the Guizhou Provincial Key Laboratory of Coal Clean Utilization(No.[2020]2001)+5 种基金the China Postdoctoral Science Foundation(Nos.2020TQ0059 and 2020M570967)the Natural Science Foundation of Liaoning Province(No.2021–MS–083)the Fundamental Research Funds for the Central Universities,China(No.N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology),Ministry of Education(No.JKF22–02)the Foundation of Liupanshui Normal University(No.LPSSYZDZK202205)the Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,China。
文摘With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.
基金Project supported by the National Natural Science Foundation of China(52261037,52401251)Key Research Project of Jiangxi Province(20203ABC28W006)+2 种基金the Research Fund of Key Laboratory of Rare Earths,Chinese Academy of SciencesKey Laboratory of Ionic Rare Earth Re sources and Environment,Ministry of Natural Resources of the People's Republic of China(2022IRERE302)the Ganzhou Science and Technology Innovation Empowerment Youth"Jie bang Gua shuai"Project。
文摘Recovery of rare earth elements(REEs)from bulk Nd-Fe-B scrap by chlorination with NH_(4)Cl as a chlorinating agent has been reported to be an energy efficient and environmentally friendly method.However,the reaction mechanism and phase evolution of the low-temperature selective chlorination process of Nd-Fe-B sludge are not clear.In this paper,we systematically investigated the lowtemperature selective chlorination process of Nd-Fe-B sludge with NH4Cl by combining thermokinetic theoretical calculations and experiments,and revealed its reaction mechanism.The phase evolution during chlorination was determined by X-ray diffraction(XRD),scanning electron microscopy(SEM)and ene rgy-dispersive X-ray spectroscopy(EDS)characterization as well as co mputational analysis of the phase stability diagram of the M-O-Cl system.To determine the optimum chlorination conditions,the effects of chlorinating agent dosage,reaction temperature and reaction time on the reaction were investigated.The results show that the rare earth components in Nd-Fe-B sludge are selectively chlorinated to RECl3and the formation of REOCl is avoided in the temperature range of 300-420℃,while the iron components are preferentially oxidized to Fe2O3.The selective chlorination reaction is consistent with the unreacted shrinking core model,and the rate-controlling step of the reaction is the internal diffusion process of NH4Cl through the transition layer of the reactant product to the surface of the Nd-Fe-B sludge.The complete chlorination of REEs is successfully achieved and 99.8%of REEs are selectively extracted into the leaching solution under optimal chlorination conditions(300℃,2.5 times of stoichiometric amount,4 h).
基金support from the National Natural Science Foundation of China(Nos.52373176,52073067)。
文摘Benzotriazole(BTA)-based A_(2)-A_1-D-A_1-A_(2)type wide-bandgap(WBG)non-fullerene acceptors(NFAs)have shown promising potential in indoor photovoltaic,and in-depth investigation of their structure-property relationship is of great significance.Herein,we explored the chlorination effect of the side chain on the terminals.We introduced Cl atoms into the benzyl side chains in parent BTA5 to synthesize two NFAs,BTA5-Cl with mono-chlorinated benzyl groups and BTA5-2Cl containing bi-chlorinated benzyl groups.We chose D18-Cl with deep-energy levels and strong crystallinity to pair with these three acceptors,affording high photovoltage and photocurrent.With the stepwise chlorination,the open-circuit voltage(V_(OC))values decrease from 1.28,1.22,to 1.20 V,while the corresponding power conversion efficiencies(PCEs)improve from 5.07%,9.15%,to 10.96%.Compared with BTA5-based OSCs,introducing Cl atoms downshifts the energy levels and slightly increases the non-radiative energy loss(0.14<0.17<0.19 e V),resulting in a sequential decrease in VO C.However,more chlorine atom replacements produce more effective exciton dissociation,higher charge transfer,and balanced carrier mobility in the blend films,ultimately achieving better PCEs.This work indicates that chlorination of the benzyl group on the terminals can improve the device's performance,implying good application potential in indoor photovoltaics.
文摘Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.
文摘Chlorination roasting followed by water leaching process was used to extract lithium from lepidolite.The microstructure of the lepidolite and roasted materials were characterized by X-ray diffraction(XRD).Various parameters including chlorination roasting temperature,time,type and amount of chlorinating agents were optimized.The conditional experiments indicate that the best mass ratio of lepidolite to NaCl to CaCl2 is 1:0.6:0.4 during the roasting process.The extraction of lithium reaches peak value of 92.86% at 880 °C,potassium,rubidium,and cesium 88.49%,93.60% and 93.01%,respectively.The XRD result indicates that the major phases of the product after roasting lepidolite with mixture of chlorinating agents(CaCl2 and NaCl) are SiO2,CaF2,KCl,CaSiO3,CaAl2Si2O8,NaCl and NaAlSi3O8.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan ProvinceProject (20095314110003) supported by the Special Research Funds of the Doctor Subject of Higher School,China
文摘Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.
基金supported by the National Natural Science Foundation of China (No. 51578441)the National Program of Water Pollution Control (No. 2013ZX07310-001)+2 种基金the Scientific Research Program funded by the Shaanxi Provincial Education Department (No. 15JK1442)the National Key Technology Support Program (No. 2014BAC13B06)the Program for Innovative Research Team in Shaanxi Province (No. 2013KCT-13)
文摘Traditional culture methods may underestimate the tolerance of microorganisms to disinfectants because of the existence of viable but nonculturable or sublethally injured cells after disinfection.The selection of a strict method is crucial for the evaluation of disinfection performance.The actions of 2 typical disinfectants–ultraviolet(UV)and chlorine–on the fecal indicator Escherichia coli were investigated by the detection of culturability,membrane permeability,metabolic activity,deoxyribonucleic acid(DNA),and messenger ribonucleic acid(m RNA).During UV disinfection,the irreversible damages in the cell membrane and cellular adenosine triphosphate(ATP)were negligible at low UV doses(80 m J/cm^2).However,membrane permeability was damaged at low doses of chlorine(5 mg/L),leading to leakage of cellular ATP.Our study showed that a slight lesion in DNA was detected even at high doses of UV(400 m J/cm^2)and chlorine(5 mg/L)treatments.The decay of m RNA was more rapid than that of DNA.The degradation level of m RNA depended on the choice of target genes.After exposure to 50 m J/cm^2UV dose or 5 mg/L chlorine for30 min,the DNA damage repair function(Rec A m RNA)was inhibited.The m RNA involved in the DNA damage repair function can be a potential indicator of bacterial viability.
文摘A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.
基金financially supported by the National Natural Science Foundation of China (50779078)
文摘Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determining an optimal chlorination scheme are the different responses of crops to the chloride added into the soil through chlorination. During two seasons in 2008 and 2009, field experiments were conducted in a solar-heated greenhouse with drip irrigation systems applying secondary sewage effluent to tomato plants to investigate the influences of chlorine injection intervals and levels on plant growth, yield, fruit quality, and emitter clogging. Injection intervals ranging from 2 to 8 wk and injection concentrations ranging 2-50 mg L-1 of free chlorine residual at the end of the laterals were used. For the 2008 experiments, the yield from the treatments of sewage application with chlorination was 7.5% lower than the yield from the treatment of sewage application without chlorination, while the yields for the treatments with and without chlorination were similar for the 2009 experiments. The statistical tests indicated that neither the chlorine injection intervals and concentrations nor the interactions between the two significantly influenced plant height, leaf area, or tomato yield for both years. The qualities of the fruit in response to chlorination were parameter-dependent. Chlorination did not significantly influence the quality of ascorbic acid, soluble sugar, or soluble acids, but the interaction between the chlorine injection interval and the chlorine concentration significantly influenced the levels of soluble solids. It was also confirmed that chlorination was an effective method for reducing biological clogging. These results suggested that chlorination is safe for a crop that has a moderate sensitivity to chlorine, like tomato, and can maintain a high level of performance in drip irrigation systems applying sewage effluent.
文摘Bormate (BrO3^-) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 μg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%-32% of Br^- was oxidized to BrO3^-. And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41-11.07, CCl2= 1.23-4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.
基金supported by the National Mega-Project of Science and Technology of China (No.2008ZX07421-002)the National Eleventh Five-Year Pillar Program of Sciencethe Technology of China (No.2006BAJ04A07)
文摘The effects of ferric ion, pH, and bromide on the formation and distribution of disinfection byproducts (DBPs) during chlorination were studied. Two raw water samples from Huangpu River and Yangtze River, two typical drinking water sources of Shanghai, were used for the investigation. Compared with the samples from Huangpu River, the raw water samples from Yangtze River had lower content of total organic carbon (TOC) and ferric ions, but higher bromide concentrations. Under controlled chlorination conditions, four trihalomethanes (THMs), nine haloacetic acids (HAAs), total organic halogen (TOX) and its halogen species fractions, including total organic chlorine (TOC1) and total organic bromide (TOBr), were determined. The results showed that co-existent ferric and bromide ions significantly promoted the formation of total THMs and HAAs for both raw water samples. Higher concentration of bromide ions significantly changed the speciation of the formed THMs and HAAs. There was an obvious shift to brominated species, which might result in a more adverse influence on the safety of drinking water. The results also indicated that high levels of bromide ions in raw water samples produced higher percentages of unknown TOBr.
基金financially supported by the National Key Basic Research Program of China(No.2014CB643403)the National Science Fund for Distinguished Young Scholars(No.51225401)
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51620105013,51904351)Innovation-Driven Project of Central South University,China(No.2020CX028)+1 种基金Natural Science Fund for Distinguished Young Scholar of Hunan Province,China(No.2019JJ20031)the National Key R&D Program of China(No.2019YFC1907400)。
文摘An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.
基金supported by the Capital Health Research and Development of Special (No.2014-1-3011)
文摘Various disinfection byproducts(DBPs) form during the process of chlorination disinfection,posing potential threats to drinking water safety and human health. Sulfamethazine(SMT),the most commonly used and frequently detected veterinary antibiotic, was investigated in detail with regard to its transformation and kinetics in reactions with free available chlorine(FAC). Using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry, several DBPs were identified based on different confidence levels, and a variety of reaction types, including desulfonation, S–N cleavage, hydroxylation, and chlorine substitution, were proposed. The kinetic experiments indicated that the reaction rate was FAC-and pH-dependent, and SMT exhibits low reactivity toward FAC in alkaline conditions. The DBPs exhibited a much higher acute toxicity than SMT, as estimated by quantitative structure activity relationship models. More importantly, we observed that the FAC-treated SMT reaction solution might increase the genotoxic potential due to the generation of DBPs. This investigation provides substantial new details related to the transformation of SMT in the chlorination disinfection process.
基金financially supported by the National NaturalScience Foundation of China (No. 51202249)the National High-Tech Research and Development Program of China (No. 2011AA06A104)the Projects in the National Science & Technology Pillar Program during the 12th Five-year Plan Period (No. 2012BAB08B04)
文摘The chlorination-volatilization process has been adopted to make full use of gold-bearing and iron-rich pyrite cinder. However, problems of low recovery rate, pulverization of pellets, and ring formation have been encountered during the industrialization of this process. The effects of various parameters on the volatilization rates of valuable metals and on the compressive strength of roasted pellets were investigated in this paper. The parameters include the CaCl_2 dosage, heating temperature, and holding time. The results show that heating temperature is the most important parameter for the recovery of target metals. More CaCl_2 was needed for the recovery of zinc than for the recovery of gold, silver, and lead. CaCl_2 started to react with sulfides/SO_2/SiO_2 at temperatures below the melting point of CaCl_2 to generate Cl_2/HCl. Gaseous CaCl_2 was formed at higher temperatures and could react with any of the components. The compressive strength of roasted CaCl_2-bearing pellets first decreased slowly with increasing temperature at temperatures lower than 873 K, which could result in the pulverization of pellets during heating. Their compressive strength increased dramatically with increasing temperature at temperatures greater than 1273 K. Certain quantities of CaCl_2 and Fe(Ⅱ) could improve the compressive strength of the roasted pellets; however, the addition of excessive CaCl_2 decreased the compressive strength of pellets.
基金financially supported by National Mega-Project of Science and Technology of China (No.2008ZX07421-002)the National Eleventh Five-Year Pillar Program of Science and Technology of China (No.2006BAJ04A07)
文摘For the system of water samples collected from Yangtze River,the effects of seasonal variation and Fe(III) concentrations on the formation and distribution of trihalomethanes (THMs) during chlorination have been investigated.The corresponding lifetime cancer risk of the formed THMs to human beings was estimated using the parameters and procedure issued by the US EPA.The results indicated that the average concentration of THMs (100.81 μg/L) in spring was significantly higher than that in other seasons,which was related to the higher bromide ion concentration resulted from the intrusion of tidal saltwater.The total cancer risk in spring reached 8.23 × 10 ?5 and 8.86 × 10 ?5 for males and females,respectively,which were about two times of those in summer under the experimental conditions.Furthermore,it was found that the presence of Fe(III) resulted in the increased level of THMs and greater cancer risk from exposure to humans.Under weak basic conditions,about 10% of the increment of THMs from the water samples in spring was found in the presence of 0.5 mg/L Fe(III) compared with the situation without Fe(III).More attention should be given to the effect of the coexistence of Fe(III) and bromide ions on the risk assessment of human intake of THMs from drinking water should be paid more attention,especially in the coastland and estuaries.
基金partially supported by the Key Laboratory of Drinking Water Science and Technology of Chinese Academy of Sciences (No. 20Z01KLDWST)。
文摘Algal blooms and wastewater effluents can introduce algal organic matter(AOM) and effluent organic matter(Ef OM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts(DBPs) during chlorination and chloramination from various types of dissolved organic matter(DOM, e.g., natural organic matter(NOM), AOM, and Ef OM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes(THMs) and haloacetic acids(HAAs) was observed in NOM than AOM and Ef OM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes(HALs), haloacetonitriles(HANs) and haloacetamides(HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor(BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance(SUVA) increased. AOM favored the formation of iodinated THMs(I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor(ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.
基金Item Sponsored by National Natural Science Foundation of China(u0837602,51104076)
文摘The aim is to remove copper from a pyrite cinder by optimizing the chlorination roasting process using re-sponse surface methodology (RSM) and the reaction mechanism of chlorination roasting based on thermodynamic calculation was discussed. A quadratic model was suggested by RSM to correlate the key parameters, namely, dos-age of chlorinating agent, roasting temperature and roasting time to the copper volatilization ratio. The results indi- cate that the model is well consistent with the experimental data at a correlation coefficient (R2) of 0.95, and the dosage of chlorinating agent and roasting temperature both have significant effects on the copper volatilization ratio. However, a roasting temperature exceeding 1170 ~C decreases the volatilization ratio. The optimum conditions for removing copper from the cinder were identified as chlorinating agent dosage at 5%, roasting temperature at i155.10 ℃ and roasting time of 10 min; under Such a conditiom a copper volatilization ratid of 95.16% Was a- chieved from the cinder. Thermodynamic calculation shows that SiO2 in the pellet plays a key role in the chlorine re-lease from calcium chloride, and the chlorine release reactions cannot occur without it.
基金supported by the Research Funds for the Central Universities (No. YX2011-12, BLJC200903,TD2011-22)the National Natural Science Foundation of China (No. 51178046)+1 种基金the Program for New Century Excellent Talents in University of China (No.NCET-08-0732)the National High Technology Research and Development Program (863) of China (No.2008AA06Z309)
文摘Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 rag/L, free chlorine dosage from 0.30 to 1.31 rag/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro- 1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.