Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
针对黑猩猩优化算法(Chimp optimization algorithm,ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题,提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm,IChOA).引入Halton序...针对黑猩猩优化算法(Chimp optimization algorithm,ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题,提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm,IChOA).引入Halton序列初始化种群,提高初始化种群的多样性,加快算法收敛,提高收敛精度;考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用,引入改进的非线性收敛因子和自适应权重因子,平衡算法的搜索能力;结合黄金正弦算法相关思想,更新个体位置,提高算法对局部极值的处理能力.通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知,改进的算法具有更好的鲁棒性;最后,通过2个实际工程优化问题的实验对比分析,进一步验证了IChOA在处理现实优化问题上的优越性.展开更多
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
文摘针对黑猩猩优化算法(Chimp optimization algorithm,ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题,提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm,IChOA).引入Halton序列初始化种群,提高初始化种群的多样性,加快算法收敛,提高收敛精度;考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用,引入改进的非线性收敛因子和自适应权重因子,平衡算法的搜索能力;结合黄金正弦算法相关思想,更新个体位置,提高算法对局部极值的处理能力.通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知,改进的算法具有更好的鲁棒性;最后,通过2个实际工程优化问题的实验对比分析,进一步验证了IChOA在处理现实优化问题上的优越性.