期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm
1
作者 Wenli Lei Xinghao Wu +1 位作者 KunJia Jinping Han 《Computers, Materials & Continua》 2025年第6期5679-5698,共20页
Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose... Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution. 展开更多
关键词 UAV path planning chimp optimization algorithm chaotic mapping adaptive weighting
在线阅读 下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
2
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
在线阅读 下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
3
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
在线阅读 下载PDF
SCChOA:Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection 被引量:2
4
作者 Shanshan Wang Quan Yuan +2 位作者 Weiwei Tan Tengfei Yang Liang Zeng 《Computers, Materials & Continua》 SCIE EI 2023年第12期3057-3075,共19页
Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of t... Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method. 展开更多
关键词 Metaheuristics chimp optimization algorithm sine-cosine algorithm feature selection and classification
在线阅读 下载PDF
Hybrid Modified Chimp Optimization Algorithm and Reinforcement Learning for Global Numeric Optimization 被引量:1
5
作者 Mohammad ShDaoud Mohammad Shehab +1 位作者 Laith Abualigah Cuong-Le Thanh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2896-2915,共20页
Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the ... Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms. 展开更多
关键词 chimp optimization algorithm Reinforcement learning Disruption operator Opposition-based learning CEC 2011 real-world problems CEC 2015 and CEC 2017 benchmark functions problems
在线阅读 下载PDF
Recent Advances of Chimp Optimization Algorithm:Variants and Applications
6
作者 Mohammad Sh.Daoud Mohammad Shehab +6 位作者 Laith Abualigah Mohammad Alshinwan Mohamed Abd Elaziz Mohd Khaled Yousef Shambour Diego Oliva Mohammad AAlia Raed Abu Zitar 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2840-2862,共23页
Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other... Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods:it has very few parameters,and no derivation information is required in the initial search.Also,it is simple,easy to use,flexible,scalable,and has a special capability to strike the right balance between exploration and exploitation during the search which leads to favorable convergence.Therefore,the ChOA has recently gained a very big research interest with tremendous audiences from several domains in a very short time.Thus,in this review paper,several research publications using ChOA have been overviewed and summarized.Initially,introductory information about ChOA is provided which illustrates the natural foundation context and its related optimization conceptual framework.The main operations of ChOA are procedurally discussed,and the theoretical foundation is described.Furthermore,the recent versions of ChOA are discussed in detail which are categorized into modified,hybridized,and paralleled versions.The main applications of ChOA are also thoroughly described.The applications belong to the domains of economics,image processing,engineering,neural network,power and energy,networks,etc.Evaluation of ChOA is also provided.The review paper will be helpful for the researchers and practitioners of ChOA belonging to a wide range of audiences from the domains of optimization,engineering,medical,data mining,and clustering.As well,it is wealthy in research on health,environment,and public safety.Also,it will aid those who are interested by providing them with potential future research. 展开更多
关键词 Artificial intelligence Nature-inspired optimization algorithms chimp optimization algorithm Optimization problems
在线阅读 下载PDF
改进黑猩猩算法动态优化冷轧FGC厚差控制研究
7
作者 齐名军 王志宝 谷海红 《轧钢》 北大核心 2025年第5期66-79,共14页
为提高冷轧轧制力模型的计算精度,减小带钢头部厚度超差长度,提高带钢成材率,本文对基本黑猩猩优化算法进行了改进,用其对影响轧制力计算的变形抗力和摩擦因素进行动态调整,获得最佳的轧制力计算模型。仿真实验结果表明:采用优化后模型... 为提高冷轧轧制力模型的计算精度,减小带钢头部厚度超差长度,提高带钢成材率,本文对基本黑猩猩优化算法进行了改进,用其对影响轧制力计算的变形抗力和摩擦因素进行动态调整,获得最佳的轧制力计算模型。仿真实验结果表明:采用优化后模型,各机架设定轧制力与实际值偏差不超过2.12%,其标准差由优化前的10.4%降至1.2%。生产实践证明:轧制力模型优化后带钢头部厚度超差长度小于20 m的比例,从优化前的35.84%增加到至60.2%,证明该方法能显著提高轧制力模型预报精度,从而提高带钢成材率。 展开更多
关键词 轧制力模型 黑猩猩算法 动态变规格(FGC) 优化 厚度超差 控制因子
原文传递
基于多策略融合的改进黑猩猩优化算法
8
作者 王燕 王妮娅 +2 位作者 毛剑琳 徐志昊 李大焱 《计算机工程与科学》 北大核心 2025年第10期1877-1889,共13页
黑猩猩优化算法ChOA具有个体多样性丰富和收敛速度快的特点,但是该算法在搜索能力和跳出局部最优上仍有改善的空间。因此,提出一种基于多策略融合的改进黑猩猩优化算法。首先,引入双交叉无限折叠迭代混沌映射对种群进行初始化,以提高初... 黑猩猩优化算法ChOA具有个体多样性丰富和收敛速度快的特点,但是该算法在搜索能力和跳出局部最优上仍有改善的空间。因此,提出一种基于多策略融合的改进黑猩猩优化算法。首先,引入双交叉无限折叠迭代混沌映射对种群进行初始化,以提高初始解质量,有助于算法后续寻优;其次,结合正余弦权重因子和个体最佳跟随策略的混合位置更新机制更新个体位置,提高算法寻优能力和收敛精度;最后,引入柯西高斯变异机制,对当前最优个体进行变异,同时结合贪婪策略选择最佳个体,增强算法跳出局部最优的能力。在数值实验中,使用10个基准函数的Wilcoxon秩和检验对比分析改进算法的寻优性能,结果表明,所提算法寻优性能较对比算法均有所提升,并在三维路径规划问题上进一步验证了算法有效性。 展开更多
关键词 黑猩猩优化算法 双交叉无限折叠迭代混沌映射 正余弦权重因子 个体最佳跟随策略 柯西高斯变异 路径规划
在线阅读 下载PDF
基于改进黑猩猩算法的母猪饲料配方研究
9
作者 谈超 周小波 +3 位作者 闫顺丕 许正荣 辜丽川 焦俊 《合肥大学学报》 2025年第2期89-97,共9页
提出了一种基于黑猩猩优化算法(Chimp Optimization Algorithm,ChOA)的改进算法。通过引入Bernoulli映射序列初始化种群,替代随机初始化;采用自适应非线性收敛因子,替代线性收敛因子;以及添加基于贪婪选择的邻域扰动机制,提出了融合多... 提出了一种基于黑猩猩优化算法(Chimp Optimization Algorithm,ChOA)的改进算法。通过引入Bernoulli映射序列初始化种群,替代随机初始化;采用自适应非线性收敛因子,替代线性收敛因子;以及添加基于贪婪选择的邻域扰动机制,提出了融合多策略的邻域扰动黑猩猩算法(Chimp Optimization Algorithm for Bernoulli and Adaptive nonlinear convergence factor with Neighborhood perturbation,BANChOA)。实验结果表明,BANChOA在解决母猪饲料配方优化问题上表现出色,相比于ChOA,BANChOA在妊娠前期母猪饲料配方的成本优化上,每千克减少了8.5%,在妊娠后期每千克减少了14.4%,在哺乳期每千克减少了18.2%。为降低母猪养殖成本奠定了基础。 展开更多
关键词 母猪饲料配方 黑猩猩算法 优化算法改进 成本优化
在线阅读 下载PDF
考虑道路受损和公平性的卡车无人机协同配送路径优化研究
10
作者 韩晶 刘艳秋 《运筹与管理》 北大核心 2025年第6期55-62,共8页
应急物流系统面临着很多的挑战,如道路受损、需求量不确定和受灾地区的“不公平感”。在这种复杂情形下,选择恰当的运输方式和科学规划路径成为亟需解决的问题之一。为了应对这一挑战,本文建立了考虑受灾点公平性的卡车和无人机协同配... 应急物流系统面临着很多的挑战,如道路受损、需求量不确定和受灾地区的“不公平感”。在这种复杂情形下,选择恰当的运输方式和科学规划路径成为亟需解决的问题之一。为了应对这一挑战,本文建立了考虑受灾点公平性的卡车和无人机协同配送路径优化模型,提出了一种混合黑猩猩优化算法(Hybrid Chimp Optimization Algorithm, HChoA)求解,并通过算例进行了仿真实验。结果表明,HChoA算法相比Gurobi在运行时间上有明显优势,且达到了相同甚至更好的结果。HChoA算法在局部搜索能力和计算精度方面都有所提高,算法的有效性得以验证。最后,对两个关键参数进行了灵敏度分析。 展开更多
关键词 应急物流 卡车和无人机 公平性 道路受损 不确定需求量 混合黑猩猩优化算法
在线阅读 下载PDF
基于ChOA-CNN-LSTM的变压器故障诊断方法
11
作者 刘雨柔 迟长春 《上海电机学院学报》 2025年第3期142-147,共6页
针对传统神经网络在变压器故障领域存在数据时序关系挖掘缺失、故障分类准确率低等问题,提出了一种基于黑猩猩优化算法(ChOA)改进的CNN-LSTM网络的变压器故障诊断模型。首先,利用卷积神经网络(CNN)对故障数据进行特征提取,并在CNN每层... 针对传统神经网络在变压器故障领域存在数据时序关系挖掘缺失、故障分类准确率低等问题,提出了一种基于黑猩猩优化算法(ChOA)改进的CNN-LSTM网络的变压器故障诊断模型。首先,利用卷积神经网络(CNN)对故障数据进行特征提取,并在CNN每层卷积层之后引入池化层;其次,将CNN提取的特征作为长短时记忆网络(LSTM)的输入,利用LSTM捕捉数据在时间维度上的特征;同时,针对CNN-LSTM初始超参数的选择对模型精度的影响,采用ChOA进行寻优;最后,通过Softmax分类器输出变压器故障类型,并与支持向量机(SVM)、CNN-LSTM,以及ChOA-SVM模型的故障分类结果进行对比。结果表明:本文模型准确率达97.5%,相较于其他模型具有更高的预测精度和稳定性。 展开更多
关键词 变压器 故障诊断 黑猩猩优化算法 卷积神经网络 长短时记忆网络
在线阅读 下载PDF
前景黑猩猩优化SVM的跨项目软件缺陷预测
12
作者 陈丽芳 张思鹏 +2 位作者 曹柯欣 韩阳 代琪 《计算机工程与设计》 北大核心 2025年第11期3239-3247,共9页
黑猩猩优化算法存在收敛慢、精度低、易陷入局部最优问题。为此,提出前景反向黑猩猩优化算法(PRChOA)。该算法运用佳点集策略初始化种群,借助前景反向学习更新攻击者等角色位置,对新个体进行位置排序,以此提升全局收敛速度与局部寻优能... 黑猩猩优化算法存在收敛慢、精度低、易陷入局部最优问题。为此,提出前景反向黑猩猩优化算法(PRChOA)。该算法运用佳点集策略初始化种群,借助前景反向学习更新攻击者等角色位置,对新个体进行位置排序,以此提升全局收敛速度与局部寻优能力。在6个基准测试函数中,PRChOA对比多个群智能算法,实验结果表明PRChOA收敛更快、寻优更强。将其用于优化SVM超参数并应用于跨项目软件缺陷预测,实验使用28个公开数据集,实验结果表明F-measure、AUC指标优于其它算法。 展开更多
关键词 黑猩猩优化算法 佳点集 前景理论 反向学习 跨项目软件缺陷预测 支持向量机 超参数优化
在线阅读 下载PDF
基于天鹰算法探索方式的黑猩猩优化算法
13
作者 张磊 胡万望 +1 位作者 刘航 汤春彬 《信息与电脑》 2025年第8期1-4,共4页
黑猩猩优化算法(Chimp Optimization Algorithm,ChOA)由于搜索代理位置的更新通常取决于表现最优的黑猩猩,因而很容易陷入局部最优解。为此,文章提出一种改进的ChOA算法以解决全局优化问题。该改进算法受天鹰优化算法(Aquila Optimizer,... 黑猩猩优化算法(Chimp Optimization Algorithm,ChOA)由于搜索代理位置的更新通常取决于表现最优的黑猩猩,因而很容易陷入局部最优解。为此,文章提出一种改进的ChOA算法以解决全局优化问题。该改进算法受天鹰优化算法(Aquila Optimizer,AO)启发,赋予部分黑猩猩飞行能力,扩大搜索范围,提升全局搜索能力,降低陷入局部最优的可能性。同时,引入一种非线性收敛因子,着重平衡黑猩猩的开发能力和天鹰的探索能力,实现探索与开发两个阶段的平衡。从实验结果来看,文章研究的优化算法可以在多维环境下有效处理优化问题,并且具有出色的稳定性。 展开更多
关键词 黑猩猩优化算法 天鹰优化算法 非线性收敛因子
在线阅读 下载PDF
基于MCOA的无线传感器网络部署优化方法研究
14
作者 闫好霖 李嘉诺 +2 位作者 李秋姿 江雷雷 邢友松 《微电子学与计算机》 2025年第3期135-144,共10页
为解决无线传感器网络部署优化覆盖率低、传感器节点分布不均匀等问题,提出了一种基于改进黑猩猩优化算法的无线传感器网络部署优化方法。首先,为了保证黑猩猩种群具有多样性,使用Tent混沌映射进行种群初始化;其次,提出了一种非线性变... 为解决无线传感器网络部署优化覆盖率低、传感器节点分布不均匀等问题,提出了一种基于改进黑猩猩优化算法的无线传感器网络部署优化方法。首先,为了保证黑猩猩种群具有多样性,使用Tent混沌映射进行种群初始化;其次,提出了一种非线性变化的收敛因子,以增强算法的全局和局部搜索能力;然后,为了防止算法陷入局部最优,同时引导种群向最优个体靠近,提出了一种狩猎贡献度加权策略对4类黑猩猩在狩猎过程中的贡献程度进行加权处理;最后,通过基准函数测试实验和无线传感器网络部署优化仿真实验验证了所提改进算法的寻优性能和应用性能。结果表明:改进黑猩猩优化算法具有比对比算法更好的寻优性能,其优化得到的无线传感器网络平均覆盖率明显优于其他对比算法,平均覆盖率最高可达99.81%,且传感器节点分布更加均匀。 展开更多
关键词 无线传感器网络 部署优化 改进黑猩猩优化算法 覆盖率
在线阅读 下载PDF
Ensemble Deep Learning with Chimp Optimization Based Medical Data Classification 被引量:1
15
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Majed Alsanea Hamdan I.Almohammed Abdul Rahaman Wahab Sait 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1643-1655,共13页
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi... Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%. 展开更多
关键词 EEG eye state data classification deep learning medical data analysis chimp optimization algorithm
在线阅读 下载PDF
引入人工偏好权重的混合型黑猩猩优化算法及应用 被引量:5
16
作者 刘威 牛英杰 +2 位作者 王东 刘光伟 马灵潇 《控制与决策》 EI CSCD 北大核心 2024年第2期411-419,共9页
为提高黑猩猩优化算法的收敛速度、求解精度和局部极值逃逸能力,提出一种引入人工偏好权重的混合型黑猩猩优化算法(HChOA).首先,结合ChOA实际设计新的非线性收敛因子平衡算法全局和局部搜索能力;其次,在黑猩猩群体中引入“相异度”的概... 为提高黑猩猩优化算法的收敛速度、求解精度和局部极值逃逸能力,提出一种引入人工偏好权重的混合型黑猩猩优化算法(HChOA).首先,结合ChOA实际设计新的非线性收敛因子平衡算法全局和局部搜索能力;其次,在黑猩猩群体中引入“相异度”的概念和“趋异斥似”的人工偏好权重,以此优化黑猩猩位置更新公式,增强迭代末期种群多样性的同时加快算法收敛速度;最后,提出一种改进的算术优化算法(IAOA)并融入ChOA中,抽取部分黑猩猩个体执行IAOA优化策略,避免因领导者陷入局部最优而导致群体搜索停滞时出现早熟收敛现象.通过8个标准测试函数在多种维度下的数值对比实验以及1个工程设计问题的求解,综合分析验证了HChOA具有显著的优越性、稳定性和鲁棒性,且具备工程应用价值. 展开更多
关键词 黑猩猩优化算法 非线性收敛因子 人工偏好权重 算术优化算法 工程设计优化 相异度
原文传递
基于特征选择和ICOA-LSSVM的变压器故障诊断 被引量:4
17
作者 向小民 盛刘宇 +1 位作者 刘谦 刘闯 《电气工程学报》 CSCD 北大核心 2024年第4期397-406,共10页
为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增... 为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增益两种方法对故障特征进行筛选,根据特征选择结果确定变压器故障诊断模型的输入量。采用ICOA算法对LSSVM的惩罚因子和核参数进行优化,建立了基于特征选择和ICOA-LSSVM的变压器故障诊断模型。采用实际变压器故障数据进行算例分析,并与其他变压器故障诊断方法进行对比,结果表明,考虑特征选择的ICOA-LSSVM模型诊断结果的正确率高达95.83%,高于其他方法,验证了所提变压器故障诊断方法的正确性和优越性。 展开更多
关键词 变压器 故障诊断 改进黑猩猩算法 最小二乘支持向量机 特征选择
在线阅读 下载PDF
改进群体智能算法的无线传感器网络覆盖优化 被引量:8
18
作者 贾润亮 张海玉 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期155-166,共12页
为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimizat... 为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimization and Harris Hawk Optimization Algorithm,ICHHO).该算法首先对黑猩猩优化算法(Chimpanzee Optimization Algorithm,ChOA)进行改进,使用Levy Flight来改善其探索阶段,然后设计一个更新的公式来计算猎物逃逸能量,作为开发和探索之间的选择因素.传感器节点随机部署后,将ICHHO在传感器节点上执行,按照改进策略更新个体位置信息,计算相应的适应程度,找到最优传感器位置,并根据传感器概率模型确定网络最优覆盖率.仿真结果验证了ICHHO对于解决WSN覆盖问题的适用性,与其他优化算法的对比结果显示,ICHHO在提高覆盖率方面优于其他算法. 展开更多
关键词 无线传感器网络 黑猩猩优化 哈里斯鹰优化 覆盖率 群体智能算法
原文传递
融合黎曼流量子学习ChOA算法的三维航迹规划
19
作者 杨寅 董大明 《计算机工程与设计》 北大核心 2024年第8期2371-2377,共7页
针对传统方法的不足,提出一种融合黎曼流量子学习黑猩猩优化算法的三维航迹规划方法。为提高黑猩猩算法的寻优精度,引入非线性收敛因子均衡算法全局搜索与局部开发,设计自适应惯性权重提升算法全局搜索能力,融入黎曼流量子学习提高种群... 针对传统方法的不足,提出一种融合黎曼流量子学习黑猩猩优化算法的三维航迹规划方法。为提高黑猩猩算法的寻优精度,引入非线性收敛因子均衡算法全局搜索与局部开发,设计自适应惯性权重提升算法全局搜索能力,融入黎曼流量子学习提高种群活跃度,避免生成局部最优解。建立三维航迹规划的约束模型和多目标代价函数,将航迹规划转化为多维函数优化问题,利用改进黑猩猩算法进行求解。实验结果表明,改进算法搜索精度更高,规划航迹能够规避所有威胁,具有更小的航迹代价。 展开更多
关键词 航迹规划 黑猩猩算法 收敛因子 惯性权重 黎曼流 量子学习 航迹代价
在线阅读 下载PDF
基于近邻牵引算子的离散黑猩猩优化算法 被引量:5
20
作者 沈孝凯 张纪会 +1 位作者 郭乙运 张保华 《控制与决策》 EI CSCD 北大核心 2024年第4期1133-1141,共9页
针对旅行商问题的特点,提出基于近邻牵引算子的离散黑猩猩优化算法.首先,引入优质片段的概念,并结合每个群组的最优个体设计其检索方法,以提高组内学习策略的效果,根据组合优化问题特点对黑猩猩群体的狩猎过程进行离散化表示;其次,通过... 针对旅行商问题的特点,提出基于近邻牵引算子的离散黑猩猩优化算法.首先,引入优质片段的概念,并结合每个群组的最优个体设计其检索方法,以提高组内学习策略的效果,根据组合优化问题特点对黑猩猩群体的狩猎过程进行离散化表示;其次,通过组间交流机制消除部分个体路径交叉;最后,为了克服传统的邻域搜索算子收敛慢和搜索效率低的缺点,提出一种新的邻域搜索方式——近邻牵引算子,其搜索目的更加明确、收敛更高效,并设计自适应概率扰动调控策略,以有效平衡算法的探索与开发.对30个TSP标准数据集进行实验,结果表明,所设计的离散黑猩猩优化算法求解质量高、收敛速度快,可以应用于组合优化问题求解. 展开更多
关键词 离散黑猩猩优化算法 优质片段 近邻牵引算子 自适应概率扰动调控 旅行商问题
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部