期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Synthesis of a Novel Charring Agent Containing Lignin and Its Intumescent Flame Retardant Properties for Polypropylene
1
作者 AO Xiuling HONG Xiaofeng +1 位作者 WANG Jiandong CHEN Jianjun 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期316-324,共9页
A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform inf... A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM)and EDS.In addition,L-OH was introduced into polypropylene(PP)together with melamine(MEL)and ammonium polyphosphate(APP)as an intumescent flame retardant(IFRR).The flame retardancy of PP/IFRR composites were investigated using limited oxygen index(LOI),UL-94,thermogravimetric analysis(TGA)and cone calorimeter(CC)test.The experimental results indicate that the PP/IFRR composites pass the V-0 grade of the UL-94 test when the addition amount of IFRR is no less than 20%,and the LOI value of the composite reaches 32.2%at 30%IFRR addition.The peak heat release rate(PHRR)and peak smoke production rate(PSPR)of the composite decrease by 72.8%and 70.4%compared with pure PP,respectively.The flame retardancy mechanism was investigated by TGA,TG-FTIR and residual carbon analysis.These analyses indicate that L-OH can form a more continuous and dense carbon layer during the combustion process,which is the main factor contributing to the improved flame retardancy of PP. 展开更多
关键词 POLYPROPYLENE flame retardants charring agent LIGNIN MODIFICATION
原文传递
Regulating the Localization of Intumescent Flame Retardant for Improving the Flame Retardancy of Ethylene-vinyl Acetate Copolymer Using Polyamide 6 as a Charring Agent
2
作者 高喜平 ZHAO Pan +3 位作者 YAO Dahu 陆昶 YUE Ruiheng SHENG Qi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期701-711,共11页
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ... Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy. 展开更多
关键词 intumescent flame retardant charring agent LOCALIZATION polyamide 6 ethylene vinyl acetate
原文传递
Investigation on ignition characteristics of charring conductive polymers stimulated by electric energy
3
作者 Zhiyuan ZHANG Hanyu DENG +2 位作者 Wenhe LIAO Yantao PU Ping CAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期68-82,共15页
The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system ... The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.In order to optimize the performance of arc ignition system,it is essential to have a deeper understanding of the ignition processes and ignition characteristics of charring conductive polymers.In this paper,the thermal decomposition,electrical conductivity and thermal conductivity characteristics of charring conductive polymers with different conductive additives and matrix materials were comprehensively evaluated.An experimental investigation was conducted to determine the ignition behaviors and characteristics of different charring conductive polymers in a visual ignition combustor.The experiment result showed that the ignition delay and external energy required for ignition are negatively correlated with voltage and initial temperature of the ignition grain,but positively correlated with oxidizer flow velocity.Compared with charring conductive polymers containing multi-walled carbon nanotube,the ignition delay of charring conductive polymers with carbon black is significantly higher and the pyrolysis time is relatively longer.However,the ignition and initial flame propagation of charring conductive polymers with carbon black is more violent and more inclined to carbon particle ignition.Finally,the restart characteristic of different charring conductive polymers was studied.The ignition delay and external energy required for ignition of different charring conductive polymers all reduced with the increasing of the number of ignitions.However,the ignition characteristics would not change a lot after repeated ignition. 展开更多
关键词 Micro/nano satellite hybrid rocket motors Arc ignition charring conductive polymer Ignition process Ignition characteristic Restart characteristic
原文传递
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
4
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 Micro/nano satellite hybrid propulsion Arc ignition charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
在线阅读 下载PDF
An experimental and numerical study on the charring rate of timber beams exposed to three-side fire 被引量:10
5
作者 ZHANG Jin LIU ZengHui +2 位作者 XU YiXiang MA ShuWei XU QingFeng 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3434-3444,共11页
To investigate the charring rate of timber beams exposed to three-side fire, a total of fifteen new and used Douglas-Fir timber beams in four groups exposed to three-side fire were experimentally studied, together wit... To investigate the charring rate of timber beams exposed to three-side fire, a total of fifteen new and used Douglas-Fir timber beams in four groups exposed to three-side fire were experimentally studied, together with the finite element analyses of the temperature distribution in the beam section. The durations of fire exposure were 0 (on a test piece), 10, 15, 20 and 30 min, according to the ISO 834 standard fire curve. The charring depth of each timber beam was calculated by averaging the values at one-third and two-thirds along each cross section to give the charring rate of timber beams. It was found that the timber beam's charring rate reduces as the duration of fire exposure increases and the vertical charring rate is slightly higher than the horizontal one. The areas of beam sections reduce due to charring and the strength and stiffness of the pyrolysis layer near the charring edge decrease owing to the high-temperature. The average horizontal and vertical charring rates are 0.98 and 1.08 mm/min, respectively. To take into account the difference between the test furnace temperature curve and the ISO 834 stand- ard fire curve, some corrections were made for these data to yield the solution for charring rate. With the help of the finite element software ANSYS, the temperature distribution of the wood's cross-section was analyzed. The longer the exposure time is, the greater the effect of density will impose on the distribution of temperature, but the moisture content has no effect. 展开更多
关键词 timber beam charring rate exposed to three-sides fire charring layer pyrolysis layer
原文传递
Evaluation of numerical ablation model for charring composites 被引量:5
6
作者 LI Wei ZHANG Jun +3 位作者 FANG GuoDong LI WeiJie LIANG Jun MENG SongHe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第8期1322-1330,共9页
Charring composites are widely used in the thermal protection system(TPS) to consume the intense aerodynamic heating during vehicle reentry. The ablation and thermal responses for the charring composites can be studie... Charring composites are widely used in the thermal protection system(TPS) to consume the intense aerodynamic heating during vehicle reentry. The ablation and thermal responses for the charring composites can be studied by using a numerical ablation model, in which the surface ablation and volume ablation could be taken into account. The coupling interactions among temperature, gas motion and interior pressure producing the pyrolysis gas could make the computation more complicated. A multi-physics model is developed to simulate the thermal response coupled with volume ablation and surface ablation. After studying four typical ablation cases, the model is validated, and then the heat transfer mechanisms in ablation are investigated. It is found that the viscous dissipation energy by the motion of pyrolysis gas can be neglected in the simulation. Also, the flow of pyrolysis gas plays an important role in the temperature response, especially under high heat flux condition. 展开更多
关键词 ablation charring COMPOSITES NUMERICAL MODEL COUPLING
原文传递
Modeling pyrolysis of charring material in fire 被引量:1
7
作者 Lizhong Yang Xiaojun Chen +2 位作者 Xiaodong Zhou Qing’an Wang Weicheng Fan 《Chinese Science Bulletin》 SCIE EI CAS 2002年第5期425-429,共5页
A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radia... A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated. 展开更多
关键词 charring materials PYROLYSIS FIRE THERMAL RADIATION model.
在线阅读 下载PDF
Experimental and reliability assessment of fire resistance of glue laminated timber beams
8
作者 Satheeskumar Navaratnam Thisari Munmulla +2 位作者 Pathmanthan Rajeev Thusiyanthan Ponnampalam Solomon Tesfamariam 《Resilient Cities and Structures》 2025年第1期101-114,共14页
Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to t... Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to the natural and uncertain phenomena(moisture,exposure time,isotropic,homogenous properties,etc.)of fire and timber.This makes it difficult to predict the fire behaviour of the GLT structural elements.To ensure building safety,it is crucial to assess GLT’s fire behaviour and post-fire structural integrity during the design stages.This study conducted the experimental tests of GLT beams(280 mm×560 mm)without loading(1.4 m)and under a four-point bending load(5.4 m).Tests identified thermal behaviour and charring rates of GLT beam.Then,the residual stiffness of the GLT beam was calculated,and the charring rates of the beams were compared with Australian and European standards.Reliability analysis was conducted for beams for a fire exposure of 120 min,considering the charring rates observed through the analysis and simulating the fire insulations.Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min,with a mean rate of 0.7 mm/min,aligning with both Australian and European standards.However,considering timber density and moisture content,the charring rates in Australian standards were conservative.The study also found that structural capacity significantly degrades under fire,with a 22%reduction in flexural stiffness after 120 min of exposure.Additionally,GLT beams can safely function for 30 min under 75%of their design moment capacity and for 60 min under 50%capacity. 展开更多
关键词 Fire test Thermal behaviour GLT beam charring rate Residual stiffness Deflection under fire
在线阅读 下载PDF
Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks Coatings 被引量:1
9
作者 Bifan Guo Yimin He +6 位作者 Yongming Chen Tianci Yang Chaohua Peng Weiang Luo Birong Zeng Yiting Xu Lizong Dai 《Nano-Micro Letters》 2025年第5期374-390,共17页
In recent decades,annual urban fire incidents,including those involving ancient wooden buildings burned,transportation,and solar panels,have increased,leading to significant loss of human life and property.Addressing ... In recent decades,annual urban fire incidents,including those involving ancient wooden buildings burned,transportation,and solar panels,have increased,leading to significant loss of human life and property.Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge.Herein,we present a transparent,low thickness,ceramifiable nanosystem coating composed of a highly adhesive base(poly(SSS1-co-HEMA1)),nanoscale layered double hydroxide sheets as ceramic precursors,and supramolecular melamine di-borate as an accelerator.We demonstrate that this hybrid coating can transform into a porous,fire-resistant protective layer with a highly thermostable vitreous phase upon exposure to flame/heat source.A nanosystem coating of just~100μm thickness can significantly increase the limiting oxygen index of wood(Pine)to 37.3%,dramatically reduce total heat release by 78.6%,and maintain low smoke toxicity(CIT_G=0.016).Detailed molecular force analysis,combined with a comprehensive examination of the underlying flame-retardant mechanisms,underscores the effectiveness of this coating.This work offers a strategy for creating efficient,environmentally friendly coatings with fire safety applications across various industries. 展开更多
关键词 NANOCOMPOSITES SUPRAMOLECULAR Flame retardancy Ceramic-like char layer Fire protection
在线阅读 下载PDF
Comparative study on the structural properties and electrochemical performance of xylan-derived char catalyzed by Na_(2)CO_(3) at various concentrations
10
作者 LI Yamin GU Yue +1 位作者 WANG Shuang TAN Jun 《燃料化学学报(中英文)》 北大核心 2025年第5期638-645,共8页
In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sod... In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sodium-ion batteries was tested.The characterization of X-ray microscopy and scanning electron microscopy demonstrated that the morphological structure of xylan char was altered due to the addition of Na_(2)CO_(3) catalyst.The increasement of the Na_(2)CO_(3)/xylan ratio resulted in a slenderization of the triangular prism shape of the char skeleton and a reduction in porosity.X-ray diffraction analysis revealed that Na_(2)CO_(3) promoted the growth of the(004)crystal plane of graphite during xylan pyrolysis,while inhibiting the formation of the(100/101)crystal planes.Raman spectroscopy analysis indicated that the presence of Na_(2)CO_(3)had changed the graphitization degree of xylan char.Electrochemical tests further showed that char prepared with a Na_(2)CO_(3)/xylan mass ratio of 1∶1 exhibited the highest sodium storage capacity.This study provides a pathway for the rational design carbon materials derived from xylan for future applications in energy storage devices. 展开更多
关键词 xylan char alkali metal salts biomass CATALYSIS energy storage
在线阅读 下载PDF
Effect of Na^(+) on Preparation of Biochars and Their Applications in Energy Storage
11
作者 Yamin Li Huiyan Feng +5 位作者 Qingqing Li Linqing Li Xiaoyi Tan Shuang Wang Yue Gu Jun Tan 《Chinese Journal of Chemical Physics》 2025年第4期479-486,I0105,共9页
This work investigated the effect of Na_(2)CO_(3)on the char structures of cellulose and lignin,respective-ly,and examined the electrochemi-cal performance of the char by act-ing as an active material for coin cells.T... This work investigated the effect of Na_(2)CO_(3)on the char structures of cellulose and lignin,respective-ly,and examined the electrochemi-cal performance of the char by act-ing as an active material for coin cells.The morphology of char can be significantly steered by the con-centration of Na_(2)CO_(3).Scanning electron microscopy analysis demonstrated that the intro-duction of Na_(2)CO_(3)into cellulose at an appropriate concentration led to the formation of tubular structure on its surface after pyrolysis,whereas the tubular structure was absent in the lignin char with the addition of Na_(2)CO_(3)at any concentrations.X-ray diffraction and Ra-man spectroscopy characterizations revealed that all the obtained chars from both cellulose and lignin,with or without Na_(2)CO_(3),were ascribed to non-crystalline graphite.Nevertheless,the crystal orientation of graphite from cellulose and lignin changed after the catalysis of Na_(2)CO_(3).Further electrochemical tests showed that cellulose char had a higher sodium stor-age capacity than that of lignin char.The excellent electrochemical performance of carbon materials derived from cellulose might hold a prospective application in the field of energy storage. 展开更多
关键词 Cellulose char Lignin char Catalytic pyrolysis Sodium storage capacity
在线阅读 下载PDF
Optimization of nitrogen-doped sludge char preparation and mechanism study for catalytic oxidation of NO at room temperature
12
作者 Wenyi Deng Yongkang Zhang +2 位作者 Mingtao Hu Ruoting Wang Yaxin Su 《Journal of Environmental Sciences》 2025年第4期503-514,共12页
Catalytic oxidation of NO at room temperature was carried out over nitrogen(N)-doped sludge char(SC)prepared from pyrolysis ofmunicipal sewage sludge,and urea was adopted as nitrogen source.The effects of different N-... Catalytic oxidation of NO at room temperature was carried out over nitrogen(N)-doped sludge char(SC)prepared from pyrolysis ofmunicipal sewage sludge,and urea was adopted as nitrogen source.The effects of different N-doping methods(one-step and two-step method),dried sludge(DS)/urea mass ratios(5:1,4:1,3:1,2:1,and 1:1),SC preparation procedures(pyrolysis only,pyrolysis with acid washing,and pyrolysis with KOH activation and acid washing),and different pyrolysis temperatures(500,600,700,and 800°C)on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation.The results indicated that N-doping could obviously promote the catalytic performance of SC.The one-step method with simultaneous sludge pyrolysis(at 700°C),KOH activation,and N-doping(DS/urea of 3:1)was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%,whereas the optimal NO conversion rate of SC without N-doping was only 47.3%.Urea worked both as carbon and nitrogen source,which could increase about 2.9%-16.5%of carbon and 24.8%-42.7%of nitrogen content in SC pyrolyzed at 700°C.N-doping significantly promoted microporosity of SC.The optimal N-doped SC showed specific surface areas of 571.38 m^(2)/g,much higher than 374.34 m^(2)/g of the optimal SC without N-doping.In addition,N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups.Finally,three reaction paths,i.e.microporous reactor,active sites,and basic site control path,were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO. 展开更多
关键词 Sewage sludge NO oxidation Pyrolysis UREA CHAR Nitrogen doping
原文传递
From ancient charred herbs to modern nanomedicine:Carbon dots as key bioactive components in carbonized traditional Chinese medicine
13
作者 LI Man LI Haojia +1 位作者 ZENG Kewu LU Zhiyuan 《World Journal of Integrated Traditional and Western Medicine》 2025年第3期145-154,共10页
The carbonization processing(Paozhi)in traditional Chinese medicine(TCM)represents a unique pharmaceutical technology where thermal modification of herbal materials enhances specific therapeutic properties,particularl... The carbonization processing(Paozhi)in traditional Chinese medicine(TCM)represents a unique pharmaceutical technology where thermal modification of herbal materials enhances specific therapeutic properties,particularly hemostatic and antioxidant effects.Despite centuries of empirical applications,the scientific basis underlying these enhanced bioactivities remains poorly characterized,particularly regarding the transformation and functionalization of active components during high-temperature carbonization.This study systematically investigates carbon dots(CDs),emerging carbon-based nanomaterials spontaneously formed during the carbonization process,as potential key bioactive constituents mediating the therapeutic actions of carbonized TCM.Through multidisciplinary analysis of pyrolysis-driven CD formation mechanisms,nanostructural evolution,and surface chemistry modulation,we demonstrate that CDs exhibit size-dependent fluorescence properties and redox-active surface functional groups that correlate with their observed biological effects.Crucially,the study establishes quantitative structure-activity relationships between CDs’quantum confinement characteristics(2–8 nm diameter),oxygencontaining surface moieties(carboxyl,hydroxyl groups),and their procoagulant/antioxidant capacities.By bridging traditional processing knowledge with nanotechnology insights,this work not only deciphers the“black box”of thermal processing in TCM but also proposes a nano-biointerface paradigm for understanding Paozhi mechanisms.The findings advance quality control strategies through CD-based spectral fingerprinting and open new avenues for developing nanoscale TCM derivatives with optimized therapeutic profiles. 展开更多
关键词 Carbon dots Charred herbal medicine Processing mechanism Bioactive nanoparticles Structure-activity relationship
暂未订购
Characterization of gaseous products and activated chars from pyrolysis of sewage sludge in the presence of activating agent
14
作者 Yuwen Zhu Jian Liu +5 位作者 Ting Li Xinrui Su Qian Dai Chang Xu Xuening Zhao Hanqiao Liu 《Chinese Journal of Chemical Engineering》 2025年第9期260-269,共10页
Sewage sludge(SS)and SS impregnated with activating agents(ZnCl_(2) and KOH)were pyrolyzed in a fixed-bed reactor to produce gaseous fuel and activated char.The effects of heating rate,pyrolysis temperature and activa... Sewage sludge(SS)and SS impregnated with activating agents(ZnCl_(2) and KOH)were pyrolyzed in a fixed-bed reactor to produce gaseous fuel and activated char.The effects of heating rate,pyrolysis temperature and activator type on gas yields,pore structure and adsorption properties of activated char were systematically studied.The results demonstrated that increasing the pyrolysis temperature from 450℃ to 850℃ propo rtionally enhanced H_(2) and CO yields from the rapid pyrolysis of SS,while CH_(4) yield showed minimal variation between 650℃ and 850℃.ZnCl_(2) notably increased the CO yield,reaching71.9 ml·g^(-1)at 850℃,but caused a marked reduction in CH_(4) yield under the tested conditions.Similarly,KOH promoted CO yield at 750℃ and 850℃,with minimal impact on CH_(4) production.Both activators facilitated higher H_(2) yields in the range of 450-550℃,while the maximum H_(2) yield(109.8 ml·g^(-1))was observed at 850℃ in the absence of activator.The activated char derived from ZnCl_(2)-assisted pyrolysis exhibited well-developed micro-and mesopore structures,with specific surface areas ranging from 188.2 to 54.1 m^(2)·g^(-1)across pyrolysis temperatures of 450-850℃.When evaluated as adsorbents for methylene blue removal,activated char with greater specific surface area and total pore volume exhibited superior adsorption capacity.The adsorption process was well-described by the pseudo-second-order kinetic model. 展开更多
关键词 Sewage sludge Pyrolysis temperature Activating agent Pyrolysis gas Activated char
在线阅读 下载PDF
NO reduction performance of pyrolyzed biomass char:Effects of dechlorination removal pretreatments
15
作者 Jing Wang Xinwei Yang +3 位作者 Ruiping Zhang Fengling Yang Frederic Marias Fei Wang 《Chinese Journal of Chemical Engineering》 2025年第4期119-129,共11页
In the current era of renewable energy prominence,the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants.However,attaining ultra-low nitrogen oxides(... In the current era of renewable energy prominence,the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants.However,attaining ultra-low nitrogen oxides(NO_x)emissions during periods of low-load operations presents a significant and persistent challenge for coal power enterprises.While techniques such as biomass re-burning and advanced re-burning have shown promise in enhancing NO reduction effciency above 800℃,their elevated levels of chlorine(Cl)and alkali metals pose potential risks to boiler equipment integrity.Therefore,this study proposes the utilization of biomass char derived from pyrolysis as a dual-purpose solution to enhance NO reduction efficiency while safeguarding boiler integrity during low-load operations.Findings indicate that pyrolysis treatment effectively reduces the Cl and alkali metal content of biomass.Specifically,it was determined that biomass char produced through deeply pyrolysis at 300℃achieves the highest NO reduction efficiency while minimizing the presence of harmful components.At a reduction temperature of 700℃,both re-burning and advanced re-burning techniques exhibit NO reduction efficiencies of 55.90%and 62.22%,which is already an ideal deficiency at low temperatures.The addition of water vapor at 700-800℃obviously avoids the oxidation of ammonia to NO in advanced reburning.Upon further analysis,denitrification efficiency in biomass char re-burning and advanced reburning is influenced not only by volatile content but also by physicochemical properties such as porosity and surface functional group distribution under certain reaction conditions.This study provides a theoretical framework for the industrial implementation of biomass char for NO control in coal-fired power plants,offering insights into optimizing NO reduction efficiency while mitigating potential risks to boiler equipment. 展开更多
关键词 Biomass char Pyrolysis conditions DECHLORINATION Biomass re-burning Biomass advanced re-burning NO heterogeneous reduction
在线阅读 下载PDF
Integration of Organic Amendments with Chemical Fertilizers Boosts Crop Yields,Nutrient Uptake,and Soil Fertility in Farm and Char Lands
16
作者 Krisna Rani Sarker Tahsina Sharmin Hoque +5 位作者 Nusrat Jahan Mim Anwarul Abedin Anamul Hoque Ahmed Gaber Mohammed M.Althaqafi Mohammad Anwar Hossain 《Phyton-International Journal of Experimental Botany》 2025年第6期1711-1733,共23页
Improving crop productivity and soil fertility through the balanced application of inorganic and organic nutrient sources is a sustainable approach in modern agriculture.Char land soils,widely distributed in riverine ... Improving crop productivity and soil fertility through the balanced application of inorganic and organic nutrient sources is a sustainable approach in modern agriculture.Char land soils,widely distributed in riverine Bangladesh,are generally low in organic matter status and deficient in necessary nutrient elements for crop production.Addressing this challenge,the present study was conducted to investigate the effects of various organic nutrient sources with inorganic fertilizers on crop yields,nutrient uptake,and soil fertility in farm(L1)and char land(L2)of Brahmaputra River in Mymensingh,Bangladesh from 2022(Y1)to 2023(Y2).For each location,eight treatments viz.T1(Control),T2[100%recommended fertilizer dose(RFD)],T3(75%RFD),T4(75%N from RFD 25%N from cow dung),T5(75%+N from RFD 25%N from poultry manure),T6(75%N from RFD 25%N from vermicompost),T7(75%N from++RFD 25%N from household compost)and T8(75%N from RFD 25%N from rice straw compost)were arranged in++a randomized complete block design with three replications using Wheat–Mungbean–T.Aman rice cropping pattern where three way interaction was considered for results.Treatment T5 performed the best in both years in both locations as it enhanced the yield components(p 0.05)and caused yield increment over control.The yield improvement in<Char land soils was higher than that in farm soils.For all three crops,treatment T5 consistently augmented the uptake of nitrogen,phosphorus,potassium,and sulphur by different parts of the crops and improved soil fertility properties such as organic matter status,cation exchange capacity,total nitrogen,available phosphorus,and sulphur as well as exchangeable potassium in both locations in both years.Cost and return analysis of different treatments for the whole cropping system showed that the highest marginal benefit-cost ratio(16.35 and 15.07)and gross return(about Tk 768,595/ha and 728,341/ha)were obtained from the T5 treatment in farm soils and Char land soils,respectively.Followed by poultry manure,vermicompost performed well in addition to mineral fertilizers for improving crop yield and soil fertility but its economic efficiency was less due to high input cost.These findings may be useful to the smallholder farmers in char areas,who could benefit from increased productivity,reduced reliance on chemical fertilizers,and improved soil health,contributing to the long-term sustainability of char land agriculture. 展开更多
关键词 Organic nutrient sources farm and char land soils crop productivity nutrient uptake soil fertility
在线阅读 下载PDF
Experimental Investigation on Ablation Characteristic of EPDM Insulator in Different Gas Environments 被引量:2
17
作者 王书贤 何国强 +1 位作者 李江 刘佩进 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期109-113,共5页
Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high conce... Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high concentration Al2O3 grain gas environments.Their charring ablation rate,thickness,surface morphology and main ingredient of the charring layer were analyzed.The experiment results show that the main influent factors for the charring ablation rate are the gas temperature,grain concentration and state of grain impact;the main influent factors for the charring layer thickness are the gas velocity and environment pressure;and the process of SiO2 migrating in the charring layer occur commonly in different gas environments.They provide a foundation for the ablation mechanism research and modeling of EPDM insulator. 展开更多
关键词 propulsion system of aviation and aerospace EPDM insulator experiment environment charring ablation rate charring layer thickness surface morphology INGREDIENT
在线阅读 下载PDF
日本酚氧化酶的分离纯化及其部分生物化学性质研究 被引量:4
18
作者 杨玲玲 樊廷俊 +5 位作者 丛日山 汤志宏 孙文杰 刘光兴 孟祥红 朱丽岩 《海洋科学》 CAS CSCD 北大核心 2008年第2期29-35,共7页
利用离子交换层析和凝胶过滤层析等方法,从日本(Charybdis japonica)血淋巴中分离纯化出了酚氧化酶,并以L-二羟苯丙氨酸(L-DOPA)作为特异性底物对其生化性质和酶性质进行了研究。结果表明,酚氧化酶和酚氧化酶原的分子质量分别为64.5 k... 利用离子交换层析和凝胶过滤层析等方法,从日本(Charybdis japonica)血淋巴中分离纯化出了酚氧化酶,并以L-二羟苯丙氨酸(L-DOPA)作为特异性底物对其生化性质和酶性质进行了研究。结果表明,酚氧化酶和酚氧化酶原的分子质量分别为64.5 ku和69.5 ku。以L-DOPA为底物对酚氧化酶纯品进行研究发现,其最适pH值为6.0、最适温度为40℃。对底物L-DOPA和儿茶酚的米氏常数Km值分别为3.41和7.97 mmol/L。该酶对亚硫酸钠、苯硫脲极为敏感,对硫脲、苯甲酸非常敏感,表明该酶很可能是一种儿茶酚酶型的酶。此外,EDTA,DETC,Zn2+,Mg2+和Cu2+均能显著抑制该酶活性,且10 mmol/L Cu2+能有效地回复该酶被DETC所抑制的酶活性,表明该酶确为一种Cu-金属酶。 展开更多
关键词 日本蟳(Char ybdis ja ponica) 酚氧化酶 L-DOPA(L—dihydroxyphenylalanine) 儿茶酚酶 金属酶
在线阅读 下载PDF
Characterization of coal using electron spin resonance: implications for the formation of inertinite macerals in the Witbank Coalfield, South Africa 被引量:3
19
作者 Ofentse M. Moroeng Jonathan M. Keartland +1 位作者 R. James Roberts Nicola J. Wagner 《International Journal of Coal Science & Technology》 EI 2018年第3期385-398,共14页
Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differ... Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differences in ESR spectra for different macerals may provide insight into coal-forming processes. In this study, ESR data along with the H/C atomic ratio (to infer the aromatic fraction) are used to characterize coal samples with the aim of assessing a fire-origin for dominant inertinite macerals. A medium rank C bituminous Witbank No. 4 Seam Upper coal (the parent) was density- fractionated to create vitrinite-rich and inertinite-rich samples. The parent sample consists of 42 vol% vitrinite and 49 vol% inertinite. The density-fractionated samples comprise of 81 vol% total vitrinite (dominated by collotelinite and collodetrinite), and 63 vol% total inertinite (dominated by fusinite, semifusinite, and inertodetrinite). The H/C ratio is 0.74 for the inertinite-rich sample, and 0.85 for the vitrinite-rich counterpart, suggesting the former sample is more aromatic. The ESR spectra obtained for the three samples were found to fit best using a Lorentzian distribution. The fit is noticeably better for the aromatic inertinite-rich sample, for which the spectrum is symmetric. This is attributed to pronounced electron mobility and exchange interactions. The higher radical content of the inertinite-rich and parent samples is attributed to the presence of specific inertinite macerals, namely: fusinite, semifusinite, and inertodetrinite. And, owing to the greater radical content of the inertinite-rich sample, the dominant inertinite macerals are interpreted to have formed through charring of plant matter. 展开更多
关键词 Main Karoo Basin Radical contents Origin pathways charring Fusinite Semifusinite
在线阅读 下载PDF
Experimental Research on Dynamic Erosion of EPDM Insulation Subjected to Particle-Laden Flow 被引量:2
20
作者 徐义华 胡春波 +1 位作者 张胜敏 陈剑 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期225-233,共9页
The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography... The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography system.The images of its erosion state and dynamic ablation rate were obtained.And the charring-layer was analyzed by using SEM and energy spectrum.The experimental results indicate that the erosion rate of EPDM insulation layer impacted by low speed and low concentration particle flow is relatively small in the 1st second since the motor starting,but increases rapidly in 1 to 2.5 s,while the erosion rate of EPDM insulation layer impacted by high speed and high concentration particle flow increases rapidly in the 1st second;the ablation rate at the section eroded intensively by particle flow increases at first,then decreases,and goes to stabilization after 4.5 s;the higher speed and concentration particle flow are,the deeper particles get into charring layer,which lead to more thermal increment and thinner charring layer. 展开更多
关键词 propulsion system of aviation & aerospace particle-laden flow EPDM dynamic ablation charring layer
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部