Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dim...Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dimensional shape of the burden surface(i.e.,a single radial profile)while neglecting the unique feature of global dissymmetry,severely restricting the development of precise charging.For this reason,this study proposes an innovative optimization strategy for the charging operation under the three-dimensional burden surface,which is the first attempt in this field.First,a practicable region partitioning scheme is introduced,and the partitioning results are then integrated with the charging mechanism to construct a three-dimensional burden surface prediction model.Next,the intrinsic relationship between the operational parameters and charging volume is revealed based on the law of mass conservation,which forms the basis for defining a novel operational parameter with variable-speed utility,referred to as the neotype charging matrix(NCM).To find the best NCM,a customized NCM optimization strategy,involving a dual constraint handling technique in conjunction with a two-stage hybrid variable differential evolution algorithm,is further developed.The industrial experiment results manifest that the partitioning scheme significantly enhances the accuracy of burden surface description.Moreover,the NCM optimization strategy offers greater flexibility and higher accuracy than current mainstream optimization strategies for the charging matrix(CM).展开更多
On March 31, in accordance with the typical design requirements of the State Grid, the f irst large electric vehicle (EV) charging station, built by the North China Grid,
We propose and investigate a novel metal/SiO_2/Si_3N_4/SiO_2/SiGe charge trapping flash memory structure(named as MONOS), utilizing Si Ge as the buried channel. The fabricated memory device demonstrates excellent pr...We propose and investigate a novel metal/SiO_2/Si_3N_4/SiO_2/SiGe charge trapping flash memory structure(named as MONOS), utilizing Si Ge as the buried channel. The fabricated memory device demonstrates excellent programerasable characteristics attributed to the fact that more carriers are generated by the smaller bandgap of Si Ge during program/erase operations. A flat-band voltage shift 2.8 V can be obtained by programming at +11 V for 100 us. Meanwhile, the memory device exhibits a large memory window of ~7.17 V under ±12 V sweeping voltage, and a negligible charge loss of 18% after 104 s' retention. In addition, the leakage current density is lower than 2.52 × 10^(-7) A·cm^(-2) below a gate breakdown voltage of 12.5 V. Investigation of leakage current-voltage indicates that the Schottky emission is the predominant conduction mechanisms for leakage current. These desirable characteristics are ascribed to the higher trap density of the Si_3N_4 charge trapping layer and the better quality of the interface between the SiO_2 tunneling layer and the Si Ge buried channel. Therefore, the application of the Si Ge buried channel is very promising to construct 3 D charge trapping NAND flash devices with improved operation characteristics.展开更多
On April 3, 39 teachers and students from the Beijing Institute of Technology (BIT)were trapped on the MaoerMountain in Fangshan District,a suburban area in Beijing. Morethan 300 persons,
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range,fixed output and multimode operation is presented in this paper.As a widely utilized power source im...A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range,fixed output and multimode operation is presented in this paper.As a widely utilized power source implement,a Li-battery is always used as the power supply for chips.Due to the internal resistance,a potential drop will be generated at the input terminal of the chip with an input current.A false shut down with a low supply voltage will happen if the input current is too large,leading to the degradation of the Li-battery's service life.To solve this problem,the inrush current is limited by introducing a new start-up state.All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process.The measurement results show that the inrush current can be limited below 1 A within all input supply ranges,and the power efficiency is higher than the conventional structure.展开更多
基金supported in part by the Science and Technology Innovation Program of Hunan Province(2024RC1007)the Young Scientists Fund of the National Natural Science Foundation of China(62303491)+2 种基金the Major Program of Xiangjiang Laboratory(22XJ01005)the Young Scientists Fund of the National Natural Science Foundation of China(62203473)Central South University Post-Graduate Independent Exploration and Innovation Project(2024ZZTS0451).
文摘Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dimensional shape of the burden surface(i.e.,a single radial profile)while neglecting the unique feature of global dissymmetry,severely restricting the development of precise charging.For this reason,this study proposes an innovative optimization strategy for the charging operation under the three-dimensional burden surface,which is the first attempt in this field.First,a practicable region partitioning scheme is introduced,and the partitioning results are then integrated with the charging mechanism to construct a three-dimensional burden surface prediction model.Next,the intrinsic relationship between the operational parameters and charging volume is revealed based on the law of mass conservation,which forms the basis for defining a novel operational parameter with variable-speed utility,referred to as the neotype charging matrix(NCM).To find the best NCM,a customized NCM optimization strategy,involving a dual constraint handling technique in conjunction with a two-stage hybrid variable differential evolution algorithm,is further developed.The industrial experiment results manifest that the partitioning scheme significantly enhances the accuracy of burden surface description.Moreover,the NCM optimization strategy offers greater flexibility and higher accuracy than current mainstream optimization strategies for the charging matrix(CM).
文摘On March 31, in accordance with the typical design requirements of the State Grid, the f irst large electric vehicle (EV) charging station, built by the North China Grid,
基金Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02303007the National Key Research and Development Program of China under Grant No 2016YFA0301701the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2016112
文摘We propose and investigate a novel metal/SiO_2/Si_3N_4/SiO_2/SiGe charge trapping flash memory structure(named as MONOS), utilizing Si Ge as the buried channel. The fabricated memory device demonstrates excellent programerasable characteristics attributed to the fact that more carriers are generated by the smaller bandgap of Si Ge during program/erase operations. A flat-band voltage shift 2.8 V can be obtained by programming at +11 V for 100 us. Meanwhile, the memory device exhibits a large memory window of ~7.17 V under ±12 V sweeping voltage, and a negligible charge loss of 18% after 104 s' retention. In addition, the leakage current density is lower than 2.52 × 10^(-7) A·cm^(-2) below a gate breakdown voltage of 12.5 V. Investigation of leakage current-voltage indicates that the Schottky emission is the predominant conduction mechanisms for leakage current. These desirable characteristics are ascribed to the higher trap density of the Si_3N_4 charge trapping layer and the better quality of the interface between the SiO_2 tunneling layer and the Si Ge buried channel. Therefore, the application of the Si Ge buried channel is very promising to construct 3 D charge trapping NAND flash devices with improved operation characteristics.
文摘On April 3, 39 teachers and students from the Beijing Institute of Technology (BIT)were trapped on the MaoerMountain in Fangshan District,a suburban area in Beijing. Morethan 300 persons,
基金supported by the National Natural Science Foundation of China(No.61106026)
文摘A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range,fixed output and multimode operation is presented in this paper.As a widely utilized power source implement,a Li-battery is always used as the power supply for chips.Due to the internal resistance,a potential drop will be generated at the input terminal of the chip with an input current.A false shut down with a low supply voltage will happen if the input current is too large,leading to the degradation of the Li-battery's service life.To solve this problem,the inrush current is limited by introducing a new start-up state.All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process.The measurement results show that the inrush current can be limited below 1 A within all input supply ranges,and the power efficiency is higher than the conventional structure.