We propose a compact scheme to modulate a relativistic electron beam(REB)into three-dimensional(3D)nanoscale bunches by injecting a rarefied REB into an underdense plasma.This scheme self-consistently integrates the l...We propose a compact scheme to modulate a relativistic electron beam(REB)into three-dimensional(3D)nanoscale bunches by injecting a rarefied REB into an underdense plasma.This scheme self-consistently integrates the lateral focusing and axial modulation of the REB in its self-driven plasma wakefield.The REB first expels the plasma electrons in its path to form a wake,where the lateral force of the chargeseparation field compresses it to higher density,so that more plasma electrons are expelled as it propagates.The positive feedback loop is repeated until the REB becomes a thin electron filament of density a hundred times that of the original.As it continues to propagate in the elongated electron-free wake bubble,the axial electric field induces an energy chirp on the electron filament,and longitudinally modulates it into 3D nanoscale bunches by asynchronous envelope oscillations.The excitation conditions of this scheme with respect to the beam and plasma parameters,as well as the spatial scale of the obtained electron bunches,are analyzed analytically and agree well with particle-in-cell simulations.In addition,our radiation simulations show that coherent extreme ultraviolet radiation can be generated with such 3D nanoscale bunches.展开更多
基金supported by the National Key R&D Program of China(Grant No.2024YFA1613400)the National Natural Science Foundation of China(Grant Nos.12475238,12175154,12205201,and 12475248)+5 种基金the Financial Support for Outstanding Talents Training Fund in Shenzhen(Project No.202101)the Shenzhen Science and Technology Program(Grant No.RCYX20221008092851073)the Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2021ZDJS107)the Natural Science Foundation of Guangdong(Grant No.2025A1515012853)the Natural Science Foundation of Top Talent of SZTU(Grant Nos.GDRC202310 and GDRC202423)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2025A1515010791).
文摘We propose a compact scheme to modulate a relativistic electron beam(REB)into three-dimensional(3D)nanoscale bunches by injecting a rarefied REB into an underdense plasma.This scheme self-consistently integrates the lateral focusing and axial modulation of the REB in its self-driven plasma wakefield.The REB first expels the plasma electrons in its path to form a wake,where the lateral force of the chargeseparation field compresses it to higher density,so that more plasma electrons are expelled as it propagates.The positive feedback loop is repeated until the REB becomes a thin electron filament of density a hundred times that of the original.As it continues to propagate in the elongated electron-free wake bubble,the axial electric field induces an energy chirp on the electron filament,and longitudinally modulates it into 3D nanoscale bunches by asynchronous envelope oscillations.The excitation conditions of this scheme with respect to the beam and plasma parameters,as well as the spatial scale of the obtained electron bunches,are analyzed analytically and agree well with particle-in-cell simulations.In addition,our radiation simulations show that coherent extreme ultraviolet radiation can be generated with such 3D nanoscale bunches.