The internal electric field(IEF)is key in speeding up the separation and transfer of photogenerated carriers,which boosts the production of reactive oxygen species(ROS).In this study,we present a novel silver iodide/N...The internal electric field(IEF)is key in speeding up the separation and transfer of photogenerated carriers,which boosts the production of reactive oxygen species(ROS).In this study,we present a novel silver iodide/N-rich carbon nitride(AgI/C_(3)N_(5))heterojunction catalyst with an IEF directed from AgI to C_(3)N_(5).We confirmed this IEF using density functional theory(DFT)calculations and various characterization methods.This IEF induces and reinforces the Type II transfer pathway for carrier separation and transfer,significantly increasing the production of ROS,particularly singlet oxygen(1O_(2)).As a result,the AgI/C_(3)N_(5)catalysts achieve 10.1 times the disinfection efficiency of C_(3)N_(5)and 5.6 times that of AgI,under one-min reaction time,107 CFU/mL of E.coli,visible light,and room temperature.It also outperforms most other AgI and carbon nitride-based heterojunction photocatalysts.Notably,the photogenerated holes(h+)selectively oxidize superoxide radicals(·O_(2)^(-))to 1O_(2)due to favorable energy alignment,minimizing O_(2)reduction effects and enhancing photocorrosion resistance,as demonstrated in five consecutive cycling experiments.In addition,the actual water disinfection tests confirmed its practical application potential.This work highlights the AgI/C_(3)N_(5)heterojunction catalyst’s promise as an efficient disinfection agent and sheds light on the photocatalytic disinfection mechanism.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Strategic control over semiconductor conductivity and charge type is fundamental to electronic devices,giving rise to a plethora of groundbreaking inventions[1].Doping serves as the cornerstone for modulating the n-ty...Strategic control over semiconductor conductivity and charge type is fundamental to electronic devices,giving rise to a plethora of groundbreaking inventions[1].Doping serves as the cornerstone for modulating the n-type or p-type characteristics of semiconductors and adjusting the carriers concentration[2,3].展开更多
基金supported by National Natural Science Foundation of China(Grant No.52300218 and 22476066)Yunnan Fundamental Research Projects(Grant No.202401CF070197).
文摘The internal electric field(IEF)is key in speeding up the separation and transfer of photogenerated carriers,which boosts the production of reactive oxygen species(ROS).In this study,we present a novel silver iodide/N-rich carbon nitride(AgI/C_(3)N_(5))heterojunction catalyst with an IEF directed from AgI to C_(3)N_(5).We confirmed this IEF using density functional theory(DFT)calculations and various characterization methods.This IEF induces and reinforces the Type II transfer pathway for carrier separation and transfer,significantly increasing the production of ROS,particularly singlet oxygen(1O_(2)).As a result,the AgI/C_(3)N_(5)catalysts achieve 10.1 times the disinfection efficiency of C_(3)N_(5)and 5.6 times that of AgI,under one-min reaction time,107 CFU/mL of E.coli,visible light,and room temperature.It also outperforms most other AgI and carbon nitride-based heterojunction photocatalysts.Notably,the photogenerated holes(h+)selectively oxidize superoxide radicals(·O_(2)^(-))to 1O_(2)due to favorable energy alignment,minimizing O_(2)reduction effects and enhancing photocorrosion resistance,as demonstrated in five consecutive cycling experiments.In addition,the actual water disinfection tests confirmed its practical application potential.This work highlights the AgI/C_(3)N_(5)heterojunction catalyst’s promise as an efficient disinfection agent and sheds light on the photocatalytic disinfection mechanism.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金supported by the Research Grants Council of Hong Kong(C4001-23GF)Guangdong Basic and Applied Basic Research Foundation(2019B151502028)CUHK Postgraduate Studentship.
文摘Strategic control over semiconductor conductivity and charge type is fundamental to electronic devices,giving rise to a plethora of groundbreaking inventions[1].Doping serves as the cornerstone for modulating the n-type or p-type characteristics of semiconductors and adjusting the carriers concentration[2,3].