期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Review of lithium-ion battery state of charge estimation 被引量:8
1
作者 Ning Li Yu Zhang +4 位作者 Fuxing He Longhui Zhu Xiaoping Zhang Yong Ma Shuning Wang 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期619-630,共12页
The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging... The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized. 展开更多
关键词 Lithium-ion battery Battery model Parameter identification state of charge estimation
在线阅读 下载PDF
State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network 被引量:6
2
作者 毕军 邵赛 +1 位作者 关伟 王璐 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期560-564,共5页
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial... The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle. 展开更多
关键词 state of charge estimation BATTERY electric vehicle radial-basis-function neural network
原文传递
Deep learning-based battery state of charge estimation:Enhancing estimation performance with unlabelled training samples 被引量:3
3
作者 Liang Ma Tieling Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期48-57,I0002,共11页
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon... The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required. 展开更多
关键词 Deep learning state of charge estimation Data-driven methods Battery management system Recurrent neural networks
在线阅读 下载PDF
Estimation Method of State-of-Charge For Lithium-ion Battery Used in Hybrid Electric Vehicles Based on Variable Structure Extended Kalman Filter 被引量:18
4
作者 SUN Yong MA Zilin +2 位作者 TANG Gongyou CHEN Zheng ZHANG Nong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期717-726,共10页
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ... Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions. 展开更多
关键词 state of charge estimation hybrid electric vehicle general lower-order model variable structure EKF
在线阅读 下载PDF
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
5
作者 郑宏 刘煦 魏旻 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期581-587,共7页
In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, ... In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. 展开更多
关键词 state of charge(SOC) estimation TEMPERATURE charge rate adaptive Kalman filter
原文传递
Towards a smarter battery management system:A critical review on deep learning-based state of charge estimation of lithium-ion batteries
6
作者 Jiaqi Yao Julia Kowal 《Energy and AI》 2025年第3期1037-1061,共25页
An accurate state of charge(SOC)estimation of lithium-ion batteries underpins a safe and optimized operation of the system.In recent years,deep learning-based SOC estimation has made significant progress.In order to p... An accurate state of charge(SOC)estimation of lithium-ion batteries underpins a safe and optimized operation of the system.In recent years,deep learning-based SOC estimation has made significant progress.In order to provide researchers in this rapidly advancing field a comprehensive overview of the state of the art,this paper carries out a structured review on deep learning-based SOC estimation of lithium-ion batteries.A detailed taxonomy of SOC estimation approaches and popularly used public datasets is provided as an introduction to the technical background.A systematic walk-through of the existing deep learning-based SOC estimation approaches,together with the frequently applied optimization strategies,is presented,where we also appeal for a standardized evaluation protocol in this field.As highlight,the current trends and emerging perspectives are pointed out and discussed in detail,including physics-informed neural networks(PINNs),multi-task learning(MTL),few-shot learning,and continual learning.We believe this work could not only provide the researchers and practitioners new to this topic with a clear and detailed manual to start with,but also point out the emerging perspectives for further cutting-edge studies towards a smarter battery management system. 展开更多
关键词 Lithium-ion batteries Battery management systems state of charge estimation Deep learning Neural networks
在线阅读 下载PDF
State of charge estimation of lithium-ion batteries in an electric vehicle using hybrid metaheuristic-deep neural networks models
7
作者 Zuriani Mustaffa Mohd Herwan Sulaiman Jeremiah Isuwa 《Energy Storage and Saving》 2025年第2期111-122,共12页
Accurate estimation of the state of charge(SoC)of lithium-ion batteries in electric vehicles(EVs)is crucial for optimizing performance,ensuring safety,and extending battery life.However,traditional estimation methods ... Accurate estimation of the state of charge(SoC)of lithium-ion batteries in electric vehicles(EVs)is crucial for optimizing performance,ensuring safety,and extending battery life.However,traditional estimation methods often struggle with the nonlinear and dynamic behavior of battery systems,leading to inaccuracies that compromise the efficiency and reliability of electric vehicles.This study proposes a novel approach for SoC estimation in BMW EVs by integrating a metaheuristic algorithm with deep neural networks.Specifically,teaching-learning based optimization(TLBO)is employed to optimize the weights and biases of the deep neural networks model,enhancing estimation accuracy.The proposed TLBO-deep neural networks(TLBO-DNNs)method was evaluated on a dataset of 1,064,000 samples,with performance assessed using mean absolute error(MAE),root mean square error(RMSE),and convergence value.The TLBO-DNNs model achieved an MAE of 3.4480,an RMSE of 4.6487,and a convergence value of 0.0328,outperforming other hybrid approaches.These include the barnacle mating optimizer-deep neural networks(BMO-DNNs)with an MAE of 5.3848,an RMSE of 7.0395,and a convergence value of 0.0492;the evolutionary mating algorithm-deep neural networks(EMA-DNNs)with an MAE of 7.6127,an RMSE of 11.2287,and a convergence value of 0.0536;and the particle swarm optimization-deep neural networks(PSO-DNNs)with an MAE of 4.3089,an RMSE of 5.9672,and a convergence value of 0.0345.Additionally,the TLBO-DNNs approach outperformed standalone models,including the autoregressive integrated moving average(ARIMA)model(MAE:14.3301,RMSE:7.0697)and support vector machines(MAE:6.0065,RMSE:8.0360).This hybrid TLBO-DNNs technique demonstrates significant potential for enhancing battery management systems in electric vehicles,contributing to improved efficiency and reliability in electric vehicle operations. 展开更多
关键词 Deep learning Deep neural networks Electric vehicle Machine learning OPTIMIZATION state of charge estimation Teaching-learning based optimization
原文传递
A strong robust state-of-charge estimation method based on the gas-liquid dynamics model
8
作者 Biao Chen Liang Song +3 位作者 Haobin Jiang Zhiguo Zhao Jun Zhu Keqiang Xu 《Green Energy and Intelligent Transportation》 2025年第3期23-34,共12页
Model-based strategies for estimating the state-of-charge(SOC)of Li-ion batteries are essential in real-time applications,such as electric vehicles and large-scale energy storage.However,based on existing models,devel... Model-based strategies for estimating the state-of-charge(SOC)of Li-ion batteries are essential in real-time applications,such as electric vehicles and large-scale energy storage.However,based on existing models,developing estimation methods with strong robustness to initial and cumulative errors,high SOC estimation accuracy,and adaptability to sparse data remains challenging.Herein,the modeling principles of the gas-liquid dynamics model are systematically clarified,and a SOC estimation method based on this model and a dual extended Kalman filter with a watchdog function is proposed.The proposed method is comprehensively compared with general extended Kalman filter and dual extended Kalman filter methods under five working conditions.The results indicate that all three methods based on the gas-liquid dynamics model have good estimation accuracy,with a maximum SOC error of 0.016 under correct initial conditions.But the proposed method has significant advantages in robustness to large initial errors,cumulative errors,and sparse data.This study provides new insights into efficient online SOC estimation. 展开更多
关键词 state of charge estimation Gas-liquid dynamics model Dual extended Kalman filter with a watchdog function Li-ion battery
原文传递
Model based SOC estimation for high-power Li-ion battery packs used on FCHVs 被引量:2
9
作者 戴海峰 Wei +2 位作者 Xuezhe Sun Zechang 《High Technology Letters》 EI CAS 2007年第3期322-326,共5页
A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based... A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based on an equivalent circuit comprising of two capacitors and three resistors. Measurements in two tests were applied to compare the SOC estimated by model based EKF estimation with the SOC calculated by coulomb counting. Results have shown that the proposed method is able to perform a good estimation of the SOC of battery packs. Moreover, a corresponding battery management systems (BMS) including software and hardware based on this method was designed. 展开更多
关键词 model based extended Kalman filter (EKF) state of charge (SOC) estimation Liion batteries fuel cell hybrid vehicles (FCHV)
在线阅读 下载PDF
An improved model combining machine learning and Kalman filtering architecture for state of charge estimation of lithium-ion batteries
10
作者 Yan Li Min Ye +2 位作者 Qiao Wang Gaoqi Lian Baozhou Xia 《Green Energy and Intelligent Transportation》 2024年第4期1-11,共11页
Accurate state of charge(SOC)estimation of lithium-ion batteries is a fundamental prerequisite for ensuring the normal and safe operation of electric vehicles,and it is also a key technology component in battery manag... Accurate state of charge(SOC)estimation of lithium-ion batteries is a fundamental prerequisite for ensuring the normal and safe operation of electric vehicles,and it is also a key technology component in battery management systems.In recent years,lithium-ion battery SOC estimation methods based on data-driven approaches have gained significant popularity.However,these methods commonly face the issue of poor model generalization and limited robustness.To address such issues,this study proposes a closed-loop SOC estimation method based on simulated annealing-optimized support vector regression(SA-SVR)combined with minimum error entropy based extended Kalman filter(MEE-EKF)algorithm.Firstly,a probability-based SA algorithm is employed to optimize the internal parameters of the SVR,thereby enhancing the precision of original SOC estimation.Secondly,utilizing the framework of the Kalman filter,the optimized SVR results are incorporated as the measurement equation and further processed through the MEE-EKF,while the ampere-hour integral physical model serves as the state equation,effectively attenuating the measurement noise,enhancing the estimation accuracy,and improving generalization ability.The proposed method is validated through battery testing experiments conducted under three typical operating conditions and one complex and random operating condition with wide temperature variations under only one condition training.The results demonstrate that the proposed method achieves a mean absolute error below 0.60%and a root mean square error below 0.73%across all operating conditions,showcasing a significant improvement in estimation accuracy compared to the benchmark algorithms.The high precision and generalization capability of the proposed method are evident,ensuring accurate SOC estimation for electric vehicles. 展开更多
关键词 Lithium-ion battery state of charge estimation Support vector regression Simulated annealing optimization Kalman filter
原文传递
Hybrid Bacterial Foraging Optimization with Sparse Autoencoder for Energy Systems
11
作者 Helen Josephine V L Ramchand Vedaiyan +4 位作者 V.M.Arul Xavier Joy Winston J A.Jegatheesan D.Lakshmi Joshua Samuel Raj 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期701-714,共14页
The Internet of Things(IoT)technologies has gained significant interest in the design of smart grids(SGs).The increasing amount of distributed generations,maturity of existing grid infrastructures,and demand network t... The Internet of Things(IoT)technologies has gained significant interest in the design of smart grids(SGs).The increasing amount of distributed generations,maturity of existing grid infrastructures,and demand network transformation have received maximum attention.An essential energy storing model mostly the electrical energy stored methods are developing as the diagnoses for its procedure was becoming further compelling.The dynamic electrical energy stored model using Electric Vehicles(EVs)is comparatively standard because of its excellent electrical property and flexibility however the chance of damage to its battery was there in event of overcharging or deep discharging and its mass penetration deeply influences the grids.This paper offers a new Hybridization of Bacterial foraging optimization with Sparse Autoencoder(HBFOA-SAE)model for IoT Enabled energy systems.The proposed HBFOA-SAE model majorly intends to effectually estimate the state of charge(SOC)values in the IoT based energy system.To accomplish this,the SAE technique was executed to proper determination of the SOC values in the energy systems.Next,for improving the performance of the SOC estimation process,the HBFOA is employed.In addition,the HBFOA technique is derived by the integration of the hill climbing(HC)concepts with the BFOA to improve the overall efficiency.For ensuring better outcomes for the HBFOA-SAE model,a comprehensive set of simulations were performed and the outcomes are inspected under several aspects.The experimental results reported the supremacy of the HBFOA-SAE model over the recent state of art approaches. 展开更多
关键词 Internet of things energy systems state of charge estimation machine learning deep learning metaheuristics
在线阅读 下载PDF
Modeling and SOC estimation of lithium iron phosphate battery considering capacity loss 被引量:13
12
作者 Junhui Li Fengjie Gao +2 位作者 Gangui Yan Tianyang Zhang Jianlin Li 《Protection and Control of Modern Power Systems》 2018年第1期61-69,共9页
Modeling and state of charge(SOC)estimation of Lithium cells are crucial techniques of the lithium battery management system.The modeling is extremely complicated as the operating status of lithium battery is affected... Modeling and state of charge(SOC)estimation of Lithium cells are crucial techniques of the lithium battery management system.The modeling is extremely complicated as the operating status of lithium battery is affected by temperature,current,cycle number,discharge depth and other factors.This paper studies the modeling of lithium iron phosphate battery based on the Thevenin’s equivalent circuit and a method to identify the open circuit voltage,resistance and capacitance in the model is proposed.To improve the accuracy of the lithium battery model,a capacity estimation algorithm considering the capacity loss during the battery’s life cycle.In addition,this paper solves the SOC estimation issue of the lithium battery caused by the uncertain noise using the extended Kalman filtering(EKF)algorithm.A simulation model of actual lithium batteries is designed in Matlab/Simulink and the simulation results verify the accuracy of the model under different operating modes. 展开更多
关键词 Lithium-iron battery Battery model Capacity fading state of charge estimation
在线阅读 下载PDF
Active Cell Balancing Control Strategy for Parallelly Connected LiFePO_(4) Batteries 被引量:2
13
作者 Md Ohirul Qays Yonis Buswig +2 位作者 Md Liton Hossain Md Momtazur Rahman Ahmed Abu-Siada 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第1期86-92,共7页
While several recent studies have focused on elimi-nating the imbalance of energy stored in series-connected battery cells,very little attention has been given to balancing the energy stored in parallel-connected batt... While several recent studies have focused on elimi-nating the imbalance of energy stored in series-connected battery cells,very little attention has been given to balancing the energy stored in parallel-connected battery cells.As such,this paper aims at presenting a new balancing approach for parallel LiFePO_(4) battery cells.In this regard,a Backpropagation Neural Network(BPNN)based technique is employed to develop a Battery Management System(BMS)that can assess the charging status of all cells and control its operations through a DC/DC Buck-Boost converter.Simulation results demonstrate the effectiveness of the proposed approach in balancing the energy stored in parallel-connected battery cells in which the state of charge(SoC)estimation error is found to be only 1.15%. 展开更多
关键词 Active cell balancing battery management system DC/DC buck-boost converter state of charge estimation
原文传递
Artificial intelligence-based integration technology applications in battery energy storage systems
14
作者 Ziqi Cai Nan Ma 《Advances in Engineering Innovation》 2024年第7期41-46,共6页
Battery Energy Storage Systems(BESS)are the backbone of modern power grids.They allow for the increase of energy storage,peak shaving,or backup power.Due to their complexity and dynamics,BESS require high-advanced man... Battery Energy Storage Systems(BESS)are the backbone of modern power grids.They allow for the increase of energy storage,peak shaving,or backup power.Due to their complexity and dynamics,BESS require high-advanced management methods to optimise its performance.This paper focuses on the integration of Artificial Intelligence(AI)into BESS,discussing three main pillars:system stability,battery usage optimisation,and predictive maintenance.The emergence of Artificial Intelligence and in particular deep learning,reinforcement learning,and neural networks,brings significant improvements in the modelling of complex reaction mechanisms,the adaptation to real-time data,and predictive maintenance.By analysing large datasets from various sources,AI can increase the precision of State of Charge(SOC)estimation,reduce maintenance costs,and improve the reliability of the system.The comparison with different case studies underlines the potential implementation of AI in real-life applications,which brings cost savings and increased system efficiency.This paper concludes that the power of AI enables new techniques for BESS management,and it would bring major benefits in the construction of more powerful and resilient energy systems as a whole. 展开更多
关键词 Artificial Intelligence Battery Energy Storage Systems Predictive Maintenance state of charge estimation System Stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部