期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Tailoring the morphology and charge transfer pathways of ultrathin Cd_(0.8)Zn_(0.2)S nanosheets via ionic liquid-modified Ti_(3)C_(2)MXenes towards remarkable photocatalytic hydrogen evolution 被引量:2
1
作者 Qianqian Hu Haiyan Yin +5 位作者 Yifan Liu Abdusalam Ablez Zhuangzhuang Wang Yue Zhan Chengfeng Du Xiaoying Huang 《Journal of Materials Science & Technology》 2025年第1期47-59,共13页
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho... Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution. 展开更多
关键词 Ionic liquid Ultrathin Cd_(0.8)Zn_(0.2)S nanosheets MXene Schottky junction Photoexcited charge separation Photocatalytic H_(2)evolution
原文传递
In-situ solution Fe-doping:A versatile pathway to significantly enhance charge separation in CuBi_(2)O_(4) photocathodes
2
作者 Jing Gao Qitao Liu +6 位作者 Haotian Wang Muhammad Bilal Akbar Zhihua Wu Jiabo Le Jianming Li Qinglu Liu Yongbo Kuang 《Journal of Energy Chemistry》 2025年第6期1-11,I0001,共12页
CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hi... CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hindered by poor charge separation efficiency.Herein,we introduce a characteristic in-situ solution Fe-doping strategy that markedly improves photoelectrochemical performance of CBO,doubling the photocurrent density and achieving an unprecedented 190 mV anodic shift in the onset potential.By integrating with an electrochemical oxidation post-treatment,a record incident photon-to-current efficiency(IPCE)exceeding 40% at 0.6 V vs.RHE under visible light illumination is achieved.The versatility of the doping strategy is demonstrated across CBO photocathodes synthesized by different methods with various morphologies,grain sizes,and crystallinities.Mechanistic studies reveal that the gradient distribution of Fe^(3+)ions generates an internal electric field that facilitates efficient charge separation and increases acceptor density.The strong Fe-O bonding also enhances structural stability against photoinduced corrosion.Notably,our investigation uncovers the non-temperature-dependent nature of CBO photocurrent,indicating that PEC performance enhancement primarily depends on reducing carrier recombination rather than improving bulk conductivity.This work lays the groundwork for future advancements in water splitting performance of CBO photocathodes,offering a complementary strategy to conventional methods for enhancing charge separation efficiency. 展开更多
关键词 CuBi_(2)O_(4)photocathode Gradient Fe doping charge separation efficiency Post-synthetic treatment Internal electric field Surface states passivation
在线阅读 下载PDF
Carbazole-Benzothiadiazole Functionalized Metallacycle for Enhanced Charge Separation and Efficient Photocatalytic Cross-Dehydrogenative Coupling
3
作者 Wei-Liang Hu Gui-Yuan Wu +2 位作者 Rong Liu Ling Hu Zhou Lu 《Chinese Journal of Chemical Physics》 2025年第5期721-728,I0131-I0146,I0150,共25页
A novel square-shaped metallacycle M,functionalized with carbazole and benzothiadiazole,was synthesized through coordination-driven self-assembly.The discrete metallacyclic architecture endows M with superior optical ... A novel square-shaped metallacycle M,functionalized with carbazole and benzothiadiazole,was synthesized through coordination-driven self-assembly.The discrete metallacyclic architecture endows M with superior optical properties owing to its rigid metallacyclic skeleton and donor-acceptor electronic structure.The femtosecond transient absorption(fs-TA)spectroscopic measurements demonstrated that the macrocyclic skeleton significantly promotes the intramolecular charge transfer efficiency and the rapid formation of triplet states.Furthermore,leveraging M as a photocatalyst enabled to drive the cross-dehydrogenative coupling(CDC)reactions with>90%efficiency,which was facilitated by its persistent charge separation states and long-lived triplet states.This work highlights the critical role of metallacycle engineering in optimizing photophysical dynamics and advancing applications in smart optoelectronics and sustainable photocatalysis. 展开更多
关键词 Femtosecond transient absorption spectroscopy charge separation METALLACYCLE Coordination-driven self-assembly
在线阅读 下载PDF
Dual electric fields in Ni-CdS@Ni(OH)_(2) heterojunction: A synergistic spatial charge separation approach for enhanced coupled CO_(2) photoreduction and selective toluene oxidation
4
作者 Khakemin Khan Ahmed Mahmood Idris +4 位作者 Haseebul Hassan Sajjad Haider Salah Ud-Din Khan Antonio Miotello Ihsanullah Khan 《Advanced Powder Materials》 2025年第3期1-11,共11页
Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is... Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems. 展开更多
关键词 Dual built-in electric fields Spatial charge separation Integrated redox reactions CO_(2)reduction Toluene oxidation Semiconductor photocatalysis
在线阅读 下载PDF
Modified TiO_(2)/In_(2)O_(3) heterojunction with efficient charge separation for visible-light-driven photocatalytic CO_(2) reduction to C_(2) product 被引量:3
5
作者 Mengfang Liang Xiaodong Shao +8 位作者 Ji Yoon Choi Young Dok Kim Trang Thu Tran Jeongyong Kim Yosep Hwang Min Gyu Kim Yunhee Cho Sophia Akhtar Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期714-720,共7页
Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ... Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts. 展开更多
关键词 HETEROJUNCTION Oxygen vacancy Photocatalytic CO_(2)reduction C_(2)product charge separation
在线阅读 下载PDF
Interface-induced charge transfer pathway switching of a Cu_(2)O-TiO_(2)photocatalyst from p-n to S-scheme heterojunction for effective photocatalytic H_(2)evolution 被引量:2
6
作者 Kaihui Huang Guijie Liang +4 位作者 Shaolong Sun Haobin Hu Xiaoming Peng Rongchen Shen Xin Li 《Journal of Materials Science & Technology》 CSCD 2024年第26期98-106,共9页
Photocatalytic hydrogen evolution from water splitting is an appealing method for producing clean chemical fuels.Cu_(2)O,with a suitable bandgap,holds promise as a semiconductor for this process.However,the strong pho... Photocatalytic hydrogen evolution from water splitting is an appealing method for producing clean chemical fuels.Cu_(2)O,with a suitable bandgap,holds promise as a semiconductor for this process.However,the strong photo-corrosion and rapid charge recombination of Cu_(2)O strongly limit its application in the photocatalytic fields.Herein,an S-scheme heterojunction photocatalyst composed of TiO_(2)and Cu_(2)O was rationally designed to effectively avoid the photo-corrosion of Cu_(2)O.The introduction of an interfacial nitrogen-doped carbon(NC)layer switches the heterojunction interfacial charge transfer pathway from the p-n to S-scheme heterojunction,which avoids excessive accumulation of photogenerated holes on the surface of Cu_(2)O.Meanwhile,the hybrid structure shows a broad spectral response(300-800 nm)and efficient charge separation and transfer efficiency.Interestingly,the highest photocatalytic hydrogen evolution rate of TiO_(2)-NC-3%Cu_(2)O-3%Ni is 13521.9μmol g^(-1)h^(-1),which is approximately 664.1 times higher than that of pure Cu_(2)O.In-situ X-ray photoelectron spectroscopy and Kelvin probe confirm the charge transfer mechanism of S-scheme heterojunction.The formation of S-scheme heterojunctions effectively accelerates the separation of photogenerated electron-hole pairs and enhances redox capacity,thereby improving the photocatalytic performance and stability of Cu_(2)O.This study provides valuable insights into the rational design of highly efficient Cu_(2)O-based heterojunction photocatalysts for hydrogen production. 展开更多
关键词 Photocatalytic hydrogen evolution Cu_(2)O S-scheme heterojunction charge separation mechanism Nitrogen doped carbon
原文传递
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
7
作者 Houyan Cheng Peng Liu +3 位作者 Yuntao Cui Ru Ya Yuxiang Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1126-1146,共21页
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t... Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. 展开更多
关键词 photoelectrochemical water splitting bulk built-in electric field cation intercalation charge separation and transfer
在线阅读 下载PDF
Non-metal inducing charge rearrangement in carbon nitride to promote photocatalytic hydrogen production
8
作者 Guanyu Wu Zhiyu He +6 位作者 Qiuheng Wang Haibo Wang Zeyu Wang Peipei Sun Zhao Mo Huanzhi Liu Hui Xu 《Journal of Materials Science & Technology》 CSCD 2024年第28期1-8,共8页
Photocatalytic hydrogen production technology offers a means of converting solar energy into chemical energy contained in hydrogen for human consumption.However,traditional photocatalysts restrict the progress of phot... Photocatalytic hydrogen production technology offers a means of converting solar energy into chemical energy contained in hydrogen for human consumption.However,traditional photocatalysts restrict the progress of photocatalytic technology owing to the straightforward complexation of carriers and lack of active sites.Thus,in this work,the number of active sites and carrier separation efficiency have been significantly improved by non-metallic modification and modulation of the geometry of carbon nitride.It has been demonstrated that oxygen doping enhances the energy band structure of benzene-substituted Odoped g-CN nanotubes(BOCN).Oxygen,in conjunction with the benzene ring,creates redox energy level positions that are spatially separated.One-dimensional tubular structures synthesised by supramolecular self-assembly have a thin-walled structure capable of exposing more active sites.Additionally,the adsorption equilibrium of H+on the catalyst is further enhanced.The in-depth analysis of each component through experiments and theoretical calculations contributes to a reasonable photocatalytic mechanism for decomposing aquatic hydrogen. 展开更多
关键词 Carbon nitride PHOTOCATALYSIS Hydrogen evolution charge separation
原文传递
Fast charge transfer kinetics in Sv-ZnIn_(2)S_(4)/Sb_(2)S_(3)S-scheme heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution
9
作者 Wei Li Jia-Jun Li +4 位作者 Zhi-Fei Liu Hong-Yu Ma Peng-Fei Fang Rui Xiong Jian-Hong Wei 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期533-542,共10页
Constructing a S-scheme heterojunction with tight interface contact and fast charge transfer is beneficial to improving the photocatalytic hydrogen evolution performance.Herein,a unique one-dimensional(1D)/two-dimensi... Constructing a S-scheme heterojunction with tight interface contact and fast charge transfer is beneficial to improving the photocatalytic hydrogen evolution performance.Herein,a unique one-dimensional(1D)/two-dimensional(2D)S-scheme heterojunction containing 1D Sb_(2)S_(3) nanorods and 2D ZnIn_(2)S_(4) with affluent sulfur vacancies(denoted as Sv-ZnIn_(2)S_(4)@Sb_(2)S_(3)) was designed.The introduced sulfur vacancy can promote the effective adsorption of H+for the following interfacial hydrogen-evolution reaction.Furthermore,the larger contact area and stronger electron interaction between Sb_(2)S_(3) and ZnIn_(2)S_(4) effectively inhibits the recombination of photo-generated electron–hole pairs and abridges the migration distance of charges.As a result,the optimal Sv-ZnIn_(2)S_(4)@Sb_(2)S_(3) sample achieves H_(2) evolution activity of 2741.3 mol·h^(−1)·g^(−1),which is 8.6 times that of pristine ZnIn_(2)S_(4) and 3.0 times that of the Sv-ZnIn_(2)S_(4) samples.Based on the experimental result,the photo-reactivity S-scheme mechanism of hydrogen evolution from water splitting with Sv-ZnIn_(2)S_(4)@Sb_(2)S_(3) is proposed.This work provides an effective method for developing S-scheme heterojunction composites of transition metal sulfide with high hydrogen evolution performance. 展开更多
关键词 ZnIn_(2)S_(4) nanosheets S-scheme heterojunction Sulfur vacancy charge transfer and separation Photocatalytic H_(2)evolution
原文传递
Time-resolved photoluminescence of anatase/rutile TiO_2 phase junction revealing charge separation dynamics 被引量:3
10
作者 王秀丽 沈帅 +1 位作者 冯兆池 李灿 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2059-2068,共10页
Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence... Junctions are an important structure that allows charge separation in solar cells and photocatalysts. Here, we studied the charge transfer at an anatase/rutile TiO2 phase junction using time-resolved photoluminescence spectroscopy. Visible (-S00 nm) and near-infrared (NIR, -830 nm) emissions were monitored to give insight into the photoinduced charges of anatase and rutile in the junction, respectively, New fast photoluminescence decay components appeared in the visible emission of futile-phase dominated TiO2 and in the NIR emission of many mixed phase TiO2samples. The fast decays confirmed that the charge separation occurred at the phase junction. The visible emission intensity from the mixed phase TiO2 increased, revealing that charge transfer from rutile to anatase was the main pathway. The charge separation slowed the microsecond time scale photolumines- cence decay rate for charge carriers in both anatase and rutile. However, the millisecond decay of the charge carriers in anatase TiO2 was accelerated, while there was almost no change in the charge carrier dynamics of rutile TiO2. Thus, charge separation at the anatase/rutile phase junction caused an increase in the charge carrier concentration on a microsecond time scale, because of slower electron-hole recombination. The enhanced photocatalytic activity previously observed at ana- tase/rutile phase junctions is likely caused by the improved charge carrier dynamics we report here. These findings may contribute to the development of improved photocatalytic materials. 展开更多
关键词 Titanium dioxide (TiO2)Anatase/rutile phase junctioncharge separation charge recombination Time-resolved photoluminescence
在线阅读 下载PDF
Boosting Photocatalytic Performance of Cu-Mn Co-doped CeO_(2) Nanoparticles for Tetracycline Degradation
11
作者 XU Rongqi MI Jianxin +5 位作者 WANG Shulin XU Man ZHU Li BAI Lei TANG Dandan LEI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期42-48,共7页
Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_... Cu-Mn co-doped CeO_(2) photocatalyst was successfully synthesized by the sol-gel method to assess its capability in degrading tetracycline.XRD and TEM results showed that Cu and Mn were successfully co-doped into CeO_(2) without forming heterostructure,XPS and photoelectrochemical results revealed that Mn ions doping amplified the generation of photo-induced charge carriers,while Cu ions doping significantly facilitated the interfacial charge transfer process.Notably,the optimized Cu3Mn2CeO_(2) nanoparticles exhibited the highest TC removal efficiency,achieved a rate of 78.18%and maintained a stable cycling performance. 展开更多
关键词 PHOTOCATALYST CO-DOPED charge separation water treatment
原文传递
Photocatalytic oxidation of high concentration NO over SnS_(2)/g-C_(3)N_(4): A mechanistic study
12
作者 WANG Haocun ZHANG Qixin +2 位作者 YANG Yifan BIAN Junjie LI Chunhu 《燃料化学学报(中英文)》 北大核心 2025年第3期323-335,共13页
This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal me... This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal. 展开更多
关键词 polymeric g-C_(3)N_(4) charge separation PHOTOCATALYSIS NO removal DFT calculations
在线阅读 下载PDF
Recent advances in tantalum nitride for photoelectrochemical water splitting
13
作者 Wenjie Yu Chao Feng +2 位作者 Ronghua Li Beibei Zhang Yanbo Li 《Chinese Journal of Catalysis》 2025年第1期51-82,共32页
Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water spli... Harnessing solar energy for renewable fuel production through artificial photosynthesis offers an ideal solution to the current energy and environmental crises.Among various methods,photoelectrochemical(PEC)water splitting stands out as a promising approach for direct solar-driven hydrogen production.Enhancing the efficiency and stability of photoelectrodes is a key focus in PEC water-splitting research.Tantalum nitride(Ta_(3)N_(5)),with its suitable band gap and band-edge positions for PEC water splitting,has emerged as a highly promising photoanode material.This review begins by introducing the history and fundamental characteristics of Ta_(3)N_(5),emphasizing both its advantages and challenges.It then explores methods to improve light absorption efficiency,charge separation and transfer efficiency,surface reaction rate,and the stability of Ta_(3)N_(5) photoanodes.Additionally,the review discusses the progress of research on tandem PEC cells incorporating Ta_(3)N_(5) photoanodes.Finally,it looks ahead to future research directions for Ta_(3)N_(5) photoanodes.The strategic approach outlined in this review can also be applied to other photoelectrode materials,providing guidance for their development. 展开更多
关键词 Photoelectrochemical water splitting Tantalum nitride Lightabsorption efficiency charge separation and transfer EFFICIENCY Surfacereaction rate STABILITY
在线阅读 下载PDF
ZnSnO_(3)-derived ZnSnO_(3)/ZIF-8 composites with enhanced adsorption and photocatalytic activity in RhB degradation and CO_(2)reduction
14
作者 Yuxin Chu Chunran Zhao +5 位作者 Yekang Zheng Xujie Ren Shude Yuan Leihong Zhao Ying Wu Yiming He 《Journal of Environmental Sciences》 2025年第8期444-456,共13页
This study aims to increase the photoactivity of ZnSnO_(3)by modifying it with zeolitic imidazolate framework-8(ZIF-8).The composite catalyst was prepared by a straightforward hydrothermal method using ZnSnO_(3)as the... This study aims to increase the photoactivity of ZnSnO_(3)by modifying it with zeolitic imidazolate framework-8(ZIF-8).The composite catalyst was prepared by a straightforward hydrothermal method using ZnSnO_(3)as the zinc source.The in-situ generated ZnSnO_(3)/ZIF-8 composite exhibits a strong interaction between ZnSnO_(3)and ZIF-8,which benefits electron transfer.Band structure analysis shows that ZIF-8 has a higher conduction band and a lower valence band than ZnSnO_(3),and cannot form a typical heterojunction.However,defects in ZIF-8 may act as electron traps,accepting electrons from the conduction band of ZnSnO_(3).This atypical heterojunction results in the spatial separation of charge carriers within the composite.The transient photocurrent response,electrochemical impedance spectroscopy,and photoluminescence analysis confirmed this hypothesis.Meanwhile,ZIF-8 also plays a role in adsorbing dyes and concentrating reactants due to its extremely high specific surface area.Therefore,the ZnSnO_(3)/ZIF-8 composite exhibits significantly improved photocatalytic performance in Rhodamine B degradation.The degradation rate of the best sample was 10.4 times that of ZnSnO_(3).Active species capture experiments showed that holes and superoxide radicals were the main active species.Additionally,the ZnSnO_(3)/ZIF-8 composite showed enhanced photocatalytic activity in CO_(2)reduction.This study may show new insights into the design of efficient photocatalytic materials using metal-organic framework materials. 展开更多
关键词 ZnSnO_(3) Zeolitic imidazolate framework-8 (ZIF-8) PHOTOCATALYTIC Rhodamine B(RhB) charge separation
原文传递
Improved hydrogen and oxygen evolution rates in Pt@TiO_(2)@RuO_(2)hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation
15
作者 Xiaxi Yao Xiuli Hu +3 位作者 Fangcheng Huang Xuhong Wang Xuekun Hong Dawei Wang 《Chinese Chemical Letters》 2025年第5期595-599,共5页
Photocatalytic overall water splitting is a promising method for producing clean hydrogen energy,but faces challenges such as low light utilization efficiency and high charge carrier recombination rates.This study dem... Photocatalytic overall water splitting is a promising method for producing clean hydrogen energy,but faces challenges such as low light utilization efficiency and high charge carrier recombination rates.This study demonstrates that dielectric Mie resonance in TiO_(2)hollow nanoshells can enhance electric field intensity and increase light absorption through resonant energy transfer,compared to crushed TiO_(2)nanoparticles.The Mie resonance effect was confirmed through fluorescence spectra,photo-response current measurements,photocatalytic water splitting experiments,and Mie calculation.The incident electricfield amplitude was doubled in hollow nanoshells,allowing for increased light trapping.Additionally,the spatially separated Pt and RuO_(2)cocatalysts on the inner and outer surfaces facilitated the separation of photoinduced electrons and holes.Pt@TiO_(2)@RuO_(2)hollow nanoshells exhibited superior photocatalytic water splitting performance,with a stable H_(2)generation rate of 50.1μmol g^(−1)h^(−1)and O_(2)evolution rate of 25.1μmol g^(−1)h^(−1),outperforming other nanostructures such as TiO_(2),Pt@TiO_(2),and TiO_(2)@RuO_(2)hollow nanoshells.This study suggests that dielectric Mie resonance and spatially-separated cocatalysts offer a new approach to simultaneously enhance light absorption and charge carrier transfer in photocatalysis. 展开更多
关键词 Dielectric Mie resonance Hollow nanoshells Spatial charge separation Overall water splitting Photocatalysis
原文传递
Switching electronic effects of UiO-67-Pd using fluorinated ligands for catalytic oxidative arylation of bio-based furfuryl alcohol
16
作者 Dongwen Guo Guohui Zeng +1 位作者 Jinxing Long Biaolin Yin 《Chinese Journal of Catalysis》 2025年第2期230-240,共11页
An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthrolin... An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthroline/bipyridine,and poly-F substituted phenyl ligands as the mixture linkers.The results of control experiments and theoretical calculations reveal that the–F on the phenyl linkers efficiently tunes the electron-deficient nature of Pd through the Zr_(6) clusters bridges,which favors the adsorption and activation of the furan ring.Furthermore,the conjugation of different nitrogen-containing ligands facilitates Pd coordination for the Heck-type insertion and subsequent electrophilic palladation,respectively.As a result,the oxidative arylation of FA derivatives is substantially enhanced because of these electronic and steric synergistic effects.Under the optimized conditions,72.2%FA conversion and 74.8%mono aryl furan(MAF)selectivity are shown in the Heck-type insertion.Meanwhile,85.3%of MAF is converted,affording 74.8%selectivity of final product(AFs)in the subsequent electrophilic palladation reaction.This process efficiency is remarkably higher than that with homogeneous catalysts.In addition,furan-benzene polymer obtained from the halogen-free synthesis catalyzed by UiO-67-Pd(F)show significantly better properties than that from conventional Suzuki coupling method.Therefore,the present work provides a new insight for useful AFs synthesis by oxidative arylation of bio-furan via rational tunning the metal center micro-environment of heterogeneous catalyst. 展开更多
关键词 Bio-based furan Catalytic oxidative arylation UiO-67-Pd(F)catalyst Ligand regulation charge separation
在线阅读 下载PDF
Recent advances in graded nanomaterial-based photocatalysts:Principles,designs,and applications
17
作者 Jiale Lv Hailiang Chu +3 位作者 Chunfeng Shao Lixian Sun Graham Dawson Kai Dai 《Chinese Journal of Catalysis》 2025年第11期75-99,共25页
The rise in global energy demand and environmental pollution highlights the importance of developing efficient and stable photocatalytic materials to address the energy crisis and environmental issues.Graded nanomater... The rise in global energy demand and environmental pollution highlights the importance of developing efficient and stable photocatalytic materials to address the energy crisis and environmental issues.Graded nanomaterials exhibit significant promise for photocatalysis due to their unique structural advantages,including multi-scale pores,high specific surface area,and optimized electron transport pathways.This review systematically examines the design principles and synthesis methods for hierarchical nanomaterials and their photocatalytic performance.Through modulation of porous structures,hierarchical heterojunctions,and core-shell configurations,graded nanomaterials notably improve light absorption efficiency,carrier separation,and surface reaction activity of photocatalysts.Strategies such as S-scheme heterojunctions and interface engineering further enhance the performance of photocatalysts for CO_(2)reduction,hydrogen production,and pollutant degradation.In situ characterization techniques offer dynamic insights into the photocatalytic mechanism.This study elucidates how hierarchical structures influence photocatalytic performance,discusses their potential applications in environmental treatment and clean energy,and proposes directions for future design and optimization of photocatalytic materials. 展开更多
关键词 Hierarchical nanomaterials PHOTOCATALYSIS S-scheme heterojunction In-situ characterization charge separation
在线阅读 下载PDF
Structure-phase transformation of bismuth oxide to BiOCl/Bi_(24)O_(31)Cl_(10)shoulder-by-shoulder heterojunctions for efficient photocatalytic removal of antibiotic
18
作者 Man Yang Zhenzhen Shi +5 位作者 Shaodong Sun Bian Yang Jie Cui Jianing Li Daqin Yun Nian Lei 《Journal of Environmental Sciences》 2025年第3期149-163,共15页
Developing heterojunction photocatalyst with well-matched interfaces andmultiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal,but still remains a great c... Developing heterojunction photocatalyst with well-matched interfaces andmultiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal,but still remains a great challenge.In present work,a new strategy of chloride anion intercalation in Bi_(2)O_(3)via one-pot hydrothermal process is proposed.The as-prepared Ta-BiOCl/Bi_(24)O_(31)Cl_(10)(TBB)heterojunctions are featured with Ta-Bi_(24)O_(31)Cl_(10)and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces.In this TBB heterojunctions,the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer andmultiple transfer paths,respectively,leading to enhanced visible light response and improved photogenerated charge separation.Meanwhile,a type-II heterojunction for photocharge separation has been obtained,in which photogenerated electrons are drove from the CB(conduction band)of Ta-Bi_(24)O_(31)Cl_(10)to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl,while the photogenerated holes are left on the VB(valence band)of Ta-Bi_(24)O_(31)Cl_(10),effectively hindering the recombination of photogenerated electron-hole pairs.Furthermore,the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species(·O_(2)^(−)).Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride(TCH)solution to Bi_(2)O_(3),Ta-BiOCl and Ta-Bi_(24)O_(31)Cl_(10).This work not only proposes a Ta-BiOCl/Bi_(24)O_(31)Cl_(10)shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-Ⅱheterojunction for highly efficient photocatalytic activity,but offers a new insight into the design of highly efficient heterojunction through phasestructure synergistic transformation strategy. 展开更多
关键词 HETEROJUNCTION Bismuth oxide charge separation/transfer Photocatalytic degradation Catalytic mechanism
原文传递
Effects of nanosized Au on the interface of zinc phthalocyanine/TiO_(2)for CO_(2)photoreduction
19
作者 Linlu Bai Wensen Li +5 位作者 Xiaoyu Chu Haochun Yin Yang Qu Ekaterina Kozlova Zhao-Di Yang Liqiang Jing 《Chinese Chemical Letters》 2025年第2期418-422,共5页
The interface modulation significantly affects the photocatalytic performances of supported metal phthalocyanines(MPc)-based systems.Herein,ZnPc was loaded on nanosized Au-modified TiO_(2)nanosheets(Au-T)to obtain wid... The interface modulation significantly affects the photocatalytic performances of supported metal phthalocyanines(MPc)-based systems.Herein,ZnPc was loaded on nanosized Au-modified TiO_(2)nanosheets(Au-T)to obtain wide-spectrum ZnPc/Au-T photocatalysts.Compared with large Au NP(8 nm)-mediated ZnPc/Au-T photocatalyst,ultrasmall Au NP(3 nm)-mediated one shows advantageous photoactivity,achieving 3-and 10-fold CO_(2)conversion rates compared with reference ZnPc/T and pristine TiO_(2)nanosheets,respectively.Employing monochromatic beam-assisted surface photovoltage and photocurrent action,etc.,the introduction of ultrasmall Au NPs more effectively facilitates intrinsic interfacial charge transfer.Moreover,ZnP c molecules are found more dispersed with the existence of small Au NPs hence exposing abundant Zn^(2+)sites as the catalytic center for CO_(2)reduction.This work provides a feasible design strategy and renewed recognition for supported MPc-based photocatalyst systems. 展开更多
关键词 Supported MPc photocatalyst Au nanoparticle Interface modulation charge separation CO_(2)photoreduction
原文传递
Cobalt single atom-phosphate functionalized reduced graphene oxide/perylenetetracarboxylic acid nanosheet heterojunctions for efficiently photocatalytic H_(2)O_(2)production
20
作者 Qihang Wang Li Meng +6 位作者 Zhuo Li Zhuoran Yang Yinan Tang Lang Yu Zhijun Li Jianhui Sun Liqiang Jing 《Chinese Journal of Catalysis》 2025年第8期192-203,共12页
The production of hydrogen peroxide(H_(2)O_(2))via artificial photosynthesis using single-atom semiconductor photocatalysts represents a promising green and sustainable technology.However,its efficiency is still limit... The production of hydrogen peroxide(H_(2)O_(2))via artificial photosynthesis using single-atom semiconductor photocatalysts represents a promising green and sustainable technology.However,its efficiency is still limited by sluggish water oxidation kinetics,poor photogenerated charge separation,and insufficient O_(2)adsorption and activation capabilities.Herein,uniformly dispersed single-atom catalysts(SACs)with a Co-N_(4)coordination structure have been synthesized by thermally transforming cobalt phthalocyanine(CoPc)assemblies pre-anchored on phosphate functionalized reduced graphene oxide(Co@rGO-P),and then used to construct heterojunctions with perylenetetracarboxylic acid(PTA)nanosheets for photocatalytic H_(2)O_(2)production by an in-situ growth method.The optimized Co@rGO-P/PTA achieved an H_(2)O_(2)production rate of 1.4 mmol g^(-1)h^(-1)in pure water,with a 12.9-fold enhancement compared to pristine PTA nanosheets exhibiting competitive photoactivity among reported perylene-based materials.Femtosecond transient absorption spectra,in-situ diffuse reflectance infrared Fourier transform spectra and theoretical calculations reveal that the exceptional performance is attributed to the enhanced electron transfer from PTA to rGO via the phosphate bridge and then to the Co-N_(4),and to the promoted O_(2)adsorption and activation at Co-N_(4)active sites.This work provides a feasible and effective strategy for designing highly efficient single-atom semiconductor heterojunction photocatalysts for H_(2)O_(2)production. 展开更多
关键词 Single-atom photocatalyst Perylenetetracarboxylic acid nanosheet Phosphate-functionalized reduced graphene oxide charge separation H_(2)O_(2)production
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部