Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value o...Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value of cashew apples by transforming them into jam. Specifically, the aim was first to characterize the sensory properties of cashew apple jam formulations using baobab powder as a source of pectin and then to optimise the formulations. A Box-Behken design with pH, Sugar, and Baobab as factors was used to model and characterize the jam sensory descriptors, and a multivariate analysis with SensomineR was used to characterize the jam formulations. The desirability function was used to optimise the formulations. The results show globally significant regressions at the 0.05 threshold for the sensory descriptors Gelling, Brilliance, Smell, Sweetness, and (-)Astringency, with the exception of (-)Salinity. The R2 coefficients are greater than 80%. The factors studied could have effects on the sensory descriptors of cashew jam formulations. The Baobab had the main effect on the gelling, smell, and astringency of the jams. Brilliance depended on the added sugar. A product effect (p < 0.001) was observed for the descriptors Smell, Gelling, Brilliance, and Sweetness, as these allowed the panelists to find differences between the formulations. Optimum jam formulation can be achieved with 51.56% sugar and 2.12% Baobab at a pH of 3.15. Cashew apple jam using Baobab offers opportunities to add value to apples that have long been abandoned in the field. It would be important to find conditions for prolonged storage of this jam.展开更多
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup...Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.展开更多
Structural and functional explorations on bio-soft matter such as micelles,vesicles,nanoparticles,aggregates or polymers derived from traditional Chinese medicine(TCM)has emerged as a new topic in the field of TCM.The...Structural and functional explorations on bio-soft matter such as micelles,vesicles,nanoparticles,aggregates or polymers derived from traditional Chinese medicine(TCM)has emerged as a new topic in the field of TCM.The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials.Despite the rapid rise of TCM-derived bio-soft matter,their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity.In this review,the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced,and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted.The pros and cons of each technique are also discussed.The future challenges and perspective of TCM-derived bio-soft matter are outlined,particularly the requirement for their precise in situ structural determination is highlighted.展开更多
Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alc...Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.展开更多
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical...For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.展开更多
In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dis...In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries.展开更多
Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS syst...Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS system in two-line breeding is laborsaving,timesaving,simple,inexpensive,efficient,and eliminating the limitations of the cytoplasmic male sterility(CMS) system.'AnnongS' is the first discovered and deeply studied TGMS rice lines in China.'AnnongS-1' and 'Y58S',two derivatives of TGMS line AnnongS,were both controlled by a single recessive gene named tms5,which was genetically mapped on chromosome 2.In this study,three populations('AnnongS-1' × 'Nanjing11','Y58S' × 'Q611',and 'Y58S' × 'Guanghui122') were developed and used for the molecular fine mapping of the tms5 gene.By analyzing recombination events in the sterile individuals using a total of 125 probes covering the tms5 region,the tms5 gene was physically mapped to a 19-kb DNA fragment between two markers 4039-1 and 4039-2,which were located on the BAC clone AP004039.After the construction of the physical map between two markers 4039-1 and 4039-2,a member(ONAC023) of the NAC(NAM-ATAF-CUC-related) gene family was identified as the candidate gene of the tms5 gene.展开更多
Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing...Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.展开更多
The solid-solid electrode-electrolyte interface represents an important component in solid-state batteries(SSBs),as ionic diffusion,reaction,transformation,and restructuring could all take place.As these processes str...The solid-solid electrode-electrolyte interface represents an important component in solid-state batteries(SSBs),as ionic diffusion,reaction,transformation,and restructuring could all take place.As these processes strongly influence the battery performance,studying the evolution of the solid-solid interfaces,particularly in situ during battery operation,can provide insights to establish the structure-property relationship for SSBs.Synchrotron X-ray techniques,owing to their unique penetration power and diverse approaches,are suitable to investigate the buried interfaces and examine structural,compositional,and morphological changes.In this review,we will discuss various surface-sensitive synchrotron-based scattering,spectroscopy,and imaging methods for the in situ characterization of solid-solid interfaces and how this information can be correlated to the electrochemical properties of SSBs.The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples,so that similar strategies can be applied by battery researchers and beyond to study similar solid-solid interface systems.展开更多
In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establi...In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.展开更多
In order to obtain nanomaterials with superparamagnetism and high saturation magnetization, Mn-doped or Zn-doped superparamagnetic ferrite nanoclusters(Mn-FNs or Zn-FNs) were prepared by microwave-assisted solvotherma...In order to obtain nanomaterials with superparamagnetism and high saturation magnetization, Mn-doped or Zn-doped superparamagnetic ferrite nanoclusters(Mn-FNs or Zn-FNs) were prepared by microwave-assisted solvothermal method in this study. Preliminary investigations were performed by transmission electron microscopy(TEM) and dynamic light scattering(DLS) instrument to observe the morphology and measure the particle size, respectively. Afterwards, Zn-FNs were chosen to be further characterized in vitro due to their better morphology and dispersity than Mn-FNs. The subsequent characterizations included crystalline phase, metal content and magnetic properties by X-ray diffractometer(XRD), inductively coupled plasma-mass spectrometry(ICP-MS) and vibrating sample magnetometer(VSM), respectively. The results showed that Zn-FNs had a cluster-like structure assembled by multiple nanoparticles. Zn-FNs were spherical in shape with good dispersity and relatively uniform particle size. Zn was successfully doped in Zn-FNs which demonstrated spinel structure and excellent magnetic properties. Therefore, Zn-FNs had a favorable application prospect as a new type of magnetic nanomaterial.展开更多
Cotton is viewed as the most important cash crop in the world,and sustains the agricultural economies of many nations by providing a sustainable fiber product for the textile industry.Due to
The objective of Ibis paper is to establish precise characterizations of scaling functions which are orthonormal or fundamental.A criterion for the corresponding wavelets is also given.
This paper is trying to analyze different characterizations between Daisy and Jordon from feminist perspective to throw light on the images of Daisy and Jordon in The Great Gatsby, portraying two different kinds of wo...This paper is trying to analyze different characterizations between Daisy and Jordon from feminist perspective to throw light on the images of Daisy and Jordon in The Great Gatsby, portraying two different kinds of women with different ideas created by F. Scott Fitzgerald at the background of the patriarchal society, Daisy stands for a traditional oppressed woman whereas Jordan represents a new female image in pursuit of freedom and independence. Simultaneously, their images also reveal an inspiring implication for women who want to obtain independence and freedom, only when women break the shackles of patriarchal ideology and gain the independence of economy by unremitting efforts can they completely enjoy the independence of mind as well as the right that they deserve.展开更多
A copper converter slag was examined chemically and mineralogically to determine its existing phases, in particular those containing Co and Cu. The slag consists predominantly of fayalite and magnetite, together with ...A copper converter slag was examined chemically and mineralogically to determine its existing phases, in particular those containing Co and Cu. The slag consists predominantly of fayalite and magnetite, together with some glass, chalcocite, and metallic copper. Copper is entrapped in the slag mostly as chalcocite and metallic copper, as well as trace copper oxide. There was no indication of any independent Co mineral in the slag, but Co was found to be enriched in fayalite and megnetite as solid solution, although Co was detected in all the phases of the slag by SEM-EDX (scanning electron microscopy equipped with model EDAX-9100 energy dispersive spectrometer) and WDS (model WDX-2A X-ray wave-length dispersive spectrometer).展开更多
Pt/CeO2 catalysts with unitary Pt species,nanoparticles,clusters or single atoms,often exhibit excellent activity and unique selectivity in many catalytic reactions benefiting from their small size,abundant unsaturate...Pt/CeO2 catalysts with unitary Pt species,nanoparticles,clusters or single atoms,often exhibit excellent activity and unique selectivity in many catalytic reactions benefiting from their small size,abundant unsaturated active sites,and unique electro nic structure.In recent years,a tre mendous number of related articles have provided great inspiration to future research and development of Pt/CeO2 catalysts.In this review,the state-of-the-art evolution of Pt nanoparticles to Pt single atoms on CeO2 is reviewed with the emphasis on synthetic strategies,advanced characterization techniques(allowing one to clarify the single atoms from clusters),the catalytic applications and mechanisms from the viewpoint of theoretical calculation.Finally,the critical outlooks and the challenges faced in developing the single-atom Pt/CeO2 catalysts are highlighted.展开更多
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations ...This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.展开更多
This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from...This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.展开更多
The effects of adding cosolvents of diglyme and 15-crown-5 to the reaction mixture of Wurtz-type coupling of dichlorosilanes on the yield and relative molecular mass dispersity of polymethylphenethylsilane(PMPES) were...The effects of adding cosolvents of diglyme and 15-crown-5 to the reaction mixture of Wurtz-type coupling of dichlorosilanes on the yield and relative molecular mass dispersity of polymethylphenethylsilane(PMPES) were discussed. The results show that addition of 10%(volume ratio of diglyme to toluene) diglyme as a cosolvent to the reaction mixture leads to the yield increase of PMPES with a monomodal distribution of relative molecular masses. Adding 10%diglyme to the reaction mixtures, the yields of polymethylcyclohexylsilane(PMCS) and copolymers (polymethylphenethylsilane-co-methylcyclohexylsilane), (the molar ratios of methylphenethyldichlorosilane to methylcyclohexyldichlorosilane were 2.0, 1.0 and 0.5, and the copolymers were abbreviated by Copolymers I, II, III, respectively) are 47%, 52%, 54%, 53%, respectively. Their relative molecular masses ([`(M)]w )(\bar M_w ) almost reach 105. These polysilanes were characterized by 1H-NMR, IR and UV absorption spectrum.展开更多
文摘Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value of cashew apples by transforming them into jam. Specifically, the aim was first to characterize the sensory properties of cashew apple jam formulations using baobab powder as a source of pectin and then to optimise the formulations. A Box-Behken design with pH, Sugar, and Baobab as factors was used to model and characterize the jam sensory descriptors, and a multivariate analysis with SensomineR was used to characterize the jam formulations. The desirability function was used to optimise the formulations. The results show globally significant regressions at the 0.05 threshold for the sensory descriptors Gelling, Brilliance, Smell, Sweetness, and (-)Astringency, with the exception of (-)Salinity. The R2 coefficients are greater than 80%. The factors studied could have effects on the sensory descriptors of cashew jam formulations. The Baobab had the main effect on the gelling, smell, and astringency of the jams. Brilliance depended on the added sugar. A product effect (p < 0.001) was observed for the descriptors Smell, Gelling, Brilliance, and Sweetness, as these allowed the panelists to find differences between the formulations. Optimum jam formulation can be achieved with 51.56% sugar and 2.12% Baobab at a pH of 3.15. Cashew apple jam using Baobab offers opportunities to add value to apples that have long been abandoned in the field. It would be important to find conditions for prolonged storage of this jam.
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
文摘Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides.
基金supported by the National Natural Science Foundation of China(Grant No.:82374033,21901067)Ministry of Science and Technology of China(Grant No.:2023YFC3504100)Starting Grant from the Ministry of Human Resource and Social Security of China(Quan Li).
文摘Structural and functional explorations on bio-soft matter such as micelles,vesicles,nanoparticles,aggregates or polymers derived from traditional Chinese medicine(TCM)has emerged as a new topic in the field of TCM.The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials.Despite the rapid rise of TCM-derived bio-soft matter,their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity.In this review,the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced,and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted.The pros and cons of each technique are also discussed.The future challenges and perspective of TCM-derived bio-soft matter are outlined,particularly the requirement for their precise in situ structural determination is highlighted.
基金supported by the National Key Research and Development Program of China:Investigate the mechanism of formation and control technologies of Chinese traditional and ethnic food quality(2021YFD2100100)。
文摘Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.
基金financially supported by the National Key R&D Program of China(No.2022YFC2906100).
文摘For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.
基金supported by the Research and Development Initiative for Scientific Innovation of New Generation Batteries(RISING)Projects,RISING2[JPNP16001]and RISING3[JPNP21006],commissioned by of the New Energy and Industrial Technology Development Organization(NEDO),Japanthe State Scholarship Fund of the China Scholarship Council[No.201906230294]for their support
文摘In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries.
文摘Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS system in two-line breeding is laborsaving,timesaving,simple,inexpensive,efficient,and eliminating the limitations of the cytoplasmic male sterility(CMS) system.'AnnongS' is the first discovered and deeply studied TGMS rice lines in China.'AnnongS-1' and 'Y58S',two derivatives of TGMS line AnnongS,were both controlled by a single recessive gene named tms5,which was genetically mapped on chromosome 2.In this study,three populations('AnnongS-1' × 'Nanjing11','Y58S' × 'Q611',and 'Y58S' × 'Guanghui122') were developed and used for the molecular fine mapping of the tms5 gene.By analyzing recombination events in the sterile individuals using a total of 125 probes covering the tms5 region,the tms5 gene was physically mapped to a 19-kb DNA fragment between two markers 4039-1 and 4039-2,which were located on the BAC clone AP004039.After the construction of the physical map between two markers 4039-1 and 4039-2,a member(ONAC023) of the NAC(NAM-ATAF-CUC-related) gene family was identified as the candidate gene of the tms5 gene.
基金supported by the National Natural Science Foundation of China(22005130,21925404,21902137,21991151,and 22021001)the National Key Research and Development Program of China(2019YFA0705400 and 2020YFB1505800)the Natural Science Foundation of Fujian Province of China(2021J01988)。
文摘Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.
文摘The solid-solid electrode-electrolyte interface represents an important component in solid-state batteries(SSBs),as ionic diffusion,reaction,transformation,and restructuring could all take place.As these processes strongly influence the battery performance,studying the evolution of the solid-solid interfaces,particularly in situ during battery operation,can provide insights to establish the structure-property relationship for SSBs.Synchrotron X-ray techniques,owing to their unique penetration power and diverse approaches,are suitable to investigate the buried interfaces and examine structural,compositional,and morphological changes.In this review,we will discuss various surface-sensitive synchrotron-based scattering,spectroscopy,and imaging methods for the in situ characterization of solid-solid interfaces and how this information can be correlated to the electrochemical properties of SSBs.The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples,so that similar strategies can be applied by battery researchers and beyond to study similar solid-solid interface systems.
基金supported by the National Key Research and Development Program of China(No.2016YFA0200602,No.2017YFA0303500,and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211,No.21633007,No.21803067,and No.91950207)+1 种基金the Anhui Initiative in Quantum Information Technologies(AHY090200)the USTC-NSRL Joint Funds(UN2018LHJJ).
文摘In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.
基金National Natural Science Foundation of China(Grant No.81571779).
文摘In order to obtain nanomaterials with superparamagnetism and high saturation magnetization, Mn-doped or Zn-doped superparamagnetic ferrite nanoclusters(Mn-FNs or Zn-FNs) were prepared by microwave-assisted solvothermal method in this study. Preliminary investigations were performed by transmission electron microscopy(TEM) and dynamic light scattering(DLS) instrument to observe the morphology and measure the particle size, respectively. Afterwards, Zn-FNs were chosen to be further characterized in vitro due to their better morphology and dispersity than Mn-FNs. The subsequent characterizations included crystalline phase, metal content and magnetic properties by X-ray diffractometer(XRD), inductively coupled plasma-mass spectrometry(ICP-MS) and vibrating sample magnetometer(VSM), respectively. The results showed that Zn-FNs had a cluster-like structure assembled by multiple nanoparticles. Zn-FNs were spherical in shape with good dispersity and relatively uniform particle size. Zn was successfully doped in Zn-FNs which demonstrated spinel structure and excellent magnetic properties. Therefore, Zn-FNs had a favorable application prospect as a new type of magnetic nanomaterial.
文摘Cotton is viewed as the most important cash crop in the world,and sustains the agricultural economies of many nations by providing a sustainable fiber product for the textile industry.Due to
基金NSF Grant #DMS-89-01345ARO Contract DAAL 03-90-G-0091
文摘The objective of Ibis paper is to establish precise characterizations of scaling functions which are orthonormal or fundamental.A criterion for the corresponding wavelets is also given.
文摘This paper is trying to analyze different characterizations between Daisy and Jordon from feminist perspective to throw light on the images of Daisy and Jordon in The Great Gatsby, portraying two different kinds of women with different ideas created by F. Scott Fitzgerald at the background of the patriarchal society, Daisy stands for a traditional oppressed woman whereas Jordan represents a new female image in pursuit of freedom and independence. Simultaneously, their images also reveal an inspiring implication for women who want to obtain independence and freedom, only when women break the shackles of patriarchal ideology and gain the independence of economy by unremitting efforts can they completely enjoy the independence of mind as well as the right that they deserve.
基金This project is financially supported by the National Natural Science Foundation of China (No. 20076048).
文摘A copper converter slag was examined chemically and mineralogically to determine its existing phases, in particular those containing Co and Cu. The slag consists predominantly of fayalite and magnetite, together with some glass, chalcocite, and metallic copper. Copper is entrapped in the slag mostly as chalcocite and metallic copper, as well as trace copper oxide. There was no indication of any independent Co mineral in the slag, but Co was found to be enriched in fayalite and megnetite as solid solution, although Co was detected in all the phases of the slag by SEM-EDX (scanning electron microscopy equipped with model EDAX-9100 energy dispersive spectrometer) and WDS (model WDX-2A X-ray wave-length dispersive spectrometer).
基金Project supported by the National Natural Science Foundation of China(21906063,21876061,21805112)Key Technology R&D Program of Shandong Province(2019GSF109042)。
文摘Pt/CeO2 catalysts with unitary Pt species,nanoparticles,clusters or single atoms,often exhibit excellent activity and unique selectivity in many catalytic reactions benefiting from their small size,abundant unsaturated active sites,and unique electro nic structure.In recent years,a tre mendous number of related articles have provided great inspiration to future research and development of Pt/CeO2 catalysts.In this review,the state-of-the-art evolution of Pt nanoparticles to Pt single atoms on CeO2 is reviewed with the emphasis on synthetic strategies,advanced characterization techniques(allowing one to clarify the single atoms from clusters),the catalytic applications and mechanisms from the viewpoint of theoretical calculation.Finally,the critical outlooks and the challenges faced in developing the single-atom Pt/CeO2 catalysts are highlighted.
基金Supported by:Pacific Earthquake Engineering Research Center Lifelines Program Under Project Task No.9C
文摘This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.
基金supported by National Natural Science Foundation of China(Grant No.11661075)
文摘This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.
基金The National Natural Science Foundation of China !(No .2 8970 817)
文摘The effects of adding cosolvents of diglyme and 15-crown-5 to the reaction mixture of Wurtz-type coupling of dichlorosilanes on the yield and relative molecular mass dispersity of polymethylphenethylsilane(PMPES) were discussed. The results show that addition of 10%(volume ratio of diglyme to toluene) diglyme as a cosolvent to the reaction mixture leads to the yield increase of PMPES with a monomodal distribution of relative molecular masses. Adding 10%diglyme to the reaction mixtures, the yields of polymethylcyclohexylsilane(PMCS) and copolymers (polymethylphenethylsilane-co-methylcyclohexylsilane), (the molar ratios of methylphenethyldichlorosilane to methylcyclohexyldichlorosilane were 2.0, 1.0 and 0.5, and the copolymers were abbreviated by Copolymers I, II, III, respectively) are 47%, 52%, 54%, 53%, respectively. Their relative molecular masses ([`(M)]w )(\bar M_w ) almost reach 105. These polysilanes were characterized by 1H-NMR, IR and UV absorption spectrum.