Assume that B is a compact subset on the real axis containing at least n+1 points,C(B) the normed linear space of all continuous functions defined on B,with Chebyshevnorm‖·‖,and G=span(g;,…,g;) an n-dimens...Assume that B is a compact subset on the real axis containing at least n+1 points,C(B) the normed linear space of all continuous functions defined on B,with Chebyshevnorm‖·‖,and G=span(g;,…,g;) an n-dimensional subspace of C(B).LetG;={g=sum from j=1 to n a;g;:v(x)≤g(x)≤u(x),q;≤sum from j=1 to n d;a;≤p;for i=1,…,l}where u,v are extended real-valued functions on B subject to -∞≤v(x)<u(x)≤+∞,which are continuous on the closed subsets {x∈B:u(x)≠+∞} and {x∈B:v(x)≠展开更多
Let the set of generalized polynomials having bounded coeffiicients be K={p=sum from j=1 to n α_j g_j α_j≤α_j≤β,j=1, 2,…, n}, where g_1, g_2,…, g_n are linearly independent continuous functions defined on thei...Let the set of generalized polynomials having bounded coeffiicients be K={p=sum from j=1 to n α_j g_j α_j≤α_j≤β,j=1, 2,…, n}, where g_1, g_2,…, g_n are linearly independent continuous functions defined on theinterval [a,b], α_j β_j are extended real numbers satisfying α_j<+∞, β_j>? andα_j≤β_j. Assumethat f is a continuous function defined on a compact set X [a, b]. This paper gives the characterizationtheorem for p being the best uniform approximation to f from K, and points out that the characteri-zation theorem can be applied in calculating the approximate solution of best approximation to f fromK.展开更多
In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions...In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions with odd and even nodes, respectively. And equivalent identities are also obtained between interpolated functions and bivariate continued fractions. Secondly, by means of three-term recurrence relations for continued fractions, the characterization theorem is presented to study on the degrees of the numerators and denominators of the interpolating continued fractions. Thirdly, some numerical examples show it feasible for the novel recursive schemes. Meanwhile, compared with the degrees of the numera- tors and denominators of bivariate Thiele-typed interpolating continued fractions, those of the new bivariate interpolating continued fractions are much low, respectively, due to the reduc- tion of redundant interpolating nodes. Finally, the operation count for the rational function interpolation is smaller than that for radial basis function interpolation.展开更多
Based on a recent result on linking stochastic differential equations on R^d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional ap...Based on a recent result on linking stochastic differential equations on R^d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensionl stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.展开更多
文摘Assume that B is a compact subset on the real axis containing at least n+1 points,C(B) the normed linear space of all continuous functions defined on B,with Chebyshevnorm‖·‖,and G=span(g;,…,g;) an n-dimensional subspace of C(B).LetG;={g=sum from j=1 to n a;g;:v(x)≤g(x)≤u(x),q;≤sum from j=1 to n d;a;≤p;for i=1,…,l}where u,v are extended real-valued functions on B subject to -∞≤v(x)<u(x)≤+∞,which are continuous on the closed subsets {x∈B:u(x)≠+∞} and {x∈B:v(x)≠
文摘Let the set of generalized polynomials having bounded coeffiicients be K={p=sum from j=1 to n α_j g_j α_j≤α_j≤β,j=1, 2,…, n}, where g_1, g_2,…, g_n are linearly independent continuous functions defined on theinterval [a,b], α_j β_j are extended real numbers satisfying α_j<+∞, β_j>? andα_j≤β_j. Assumethat f is a continuous function defined on a compact set X [a, b]. This paper gives the characterizationtheorem for p being the best uniform approximation to f from K, and points out that the characteri-zation theorem can be applied in calculating the approximate solution of best approximation to f fromK.
基金Supported by the Special Funds Tianyuan for the National Natural Science Foundation of China(Grant No.11426086)the Fundamental Research Funds for the Central Universities(Grant No.2016B08714)the Natural Science Foundation of Jiangsu Province for the Youth(Grant No.BK20160853)
文摘In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions with odd and even nodes, respectively. And equivalent identities are also obtained between interpolated functions and bivariate continued fractions. Secondly, by means of three-term recurrence relations for continued fractions, the characterization theorem is presented to study on the degrees of the numerators and denominators of the interpolating continued fractions. Thirdly, some numerical examples show it feasible for the novel recursive schemes. Meanwhile, compared with the degrees of the numera- tors and denominators of bivariate Thiele-typed interpolating continued fractions, those of the new bivariate interpolating continued fractions are much low, respectively, due to the reduc- tion of redundant interpolating nodes. Finally, the operation count for the rational function interpolation is smaller than that for radial basis function interpolation.
文摘Based on a recent result on linking stochastic differential equations on R^d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensionl stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.