The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of...The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.展开更多
According to the time-resolved spectra of lightning return stroke process and based on the plasma transmission theory,the evolution characteristics of the thermal conductivity and thermal diffusion coefficient of the ...According to the time-resolved spectra of lightning return stroke process and based on the plasma transmission theory,the evolution characteristics of the thermal conductivity and thermal diffusion coefficient of the discharge channel over time during the lightning return stroke are discussed.The radial distribution of the channel temperature in the lightning peak current phase is calculated,and the heat transfer along the radial direction of the channel is analyzed.The calculated transmission characteristic parameter values of the lightning discharge channel are all in a reasonable range.The results show that the heat transport coefficient of the lightning channel is closely related to the channel temperature and electron density.After returning to the peak current,the channel temperature slowly decreases,and the transport coefficient shows a non-linear and monotonous decay trend.The closer to the current core channel is,the greater the temperature gradient is,and the more the heat transferred radially outward is.展开更多
A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing s...A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing.展开更多
Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult t...Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.展开更多
Compared with non-gray model,equivalent gray model has equal calculation accuracy but much higher computing speed.To solve the existing problems of the equivalent gray method,sole ternary model was developed.In the mo...Compared with non-gray model,equivalent gray model has equal calculation accuracy but much higher computing speed.To solve the existing problems of the equivalent gray method,sole ternary model was developed.In the model,coupling solving process of energy balance equations is omitted and the model zone is real closed.Meanwhile,the full furnace temperature and heat flow calculations are avoided,which makes it easier to find the relationship between the equivalent gray gas radiation characteristic parameter and the initial conditions.The radiation characteristic parameter was calculated with different temperature combinations,different model zone sizes and different partial pressures of absorbent gas.The results show the similar variations in the absorption coefficient and emissivity for the equivalent gray model,which both decrease with the increase of the gas temperature and the surface temperature(especially the former one)as well as the model zone size while increase with the increase of the partial pressure of absorbent gas.展开更多
The geometrical parameters of impeller or volute casing (including guide vane ofmultistage pump) have a great effect on pump characteristics, but ultimately. the pump characteris-tics are determined by the geometrical...The geometrical parameters of impeller or volute casing (including guide vane ofmultistage pump) have a great effect on pump characteristics, but ultimately. the pump characteris-tics are determined by the geometrical parameters of impeller and volute casing cooperatively. Inthis essay the effect of impeller and volute casing on pump characteristics will be studiedquantitatvely from the angle cf optimal matching of them.展开更多
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials ...In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9 have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 ℃, 239 ℃, 220 ℃ and 220 ℃, respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples 1, 2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6, sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the reliability of measured results.展开更多
Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof di...Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof disasters.This paper summarized and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters.This work also proposed monitoring characteristic parameters of roof disasters based on support posture-load changes,such as the support location and support posture.The data feature decomposition method of the additive model was used with the monitoring load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend,cycle period,and residuals,which provided the period weighting characteristics of the longwall face.The autoregressive,long-short term memory,and support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions.The seasonal autoregressive integrated moving average(SARIMA)and autoregressive integrated moving average(ARIMA)models were adopted to predict the support cycle load of the hydraulic support.The SARIMA model is shown to be better than the ARIMA model for load predictions in one support cycle,but the prediction effect of these two algorithms over a fracture cycle is poor.Therefore,we proposed a hydraulic support load prediction method based on multiple data cutting and a hydraulic support load template library.The constructed technical framework of the roof disaster intelligent prediction platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture monitoring information from the hydraulic support.展开更多
Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Dopple...Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.展开更多
To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random ex...To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.展开更多
A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage...A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.展开更多
Hot deformation behavior of a novel Ni-Cr-Mo-B heavy plate steel was studied by hot compression tests,which were conducted on a Gleeble-3800thermo-mechanical simulator corresponding to the temperature range of850-1 15...Hot deformation behavior of a novel Ni-Cr-Mo-B heavy plate steel was studied by hot compression tests,which were conducted on a Gleeble-3800thermo-mechanical simulator corresponding to the temperature range of850-1 150℃ with the strain rates of 0.01-10s-1 and the true strain of 0.8.The results suggest that the majority of flow curves exhibit a typical dynamic recrystallization(DRX)behavior with an apparent single peak stress followed by agradual fall towards a steady-state stress.Important characteristic parameters of flow behavior as critical stress/strain for initiation of DRX and peak and steady-state stress/strain were derived from curves of strain hardening rate versus stress and stress versus strain,respectively.Material constants of the investigated steel were determined based on Arrhenius-type constitutive equation,and then the peak stress was predicted by the equation with the hot deformation activation energy of 379 139J/mol,and the predicted values agree well with the experimental values.Furthermore,the effect of Zener-Hollomon parameter on the characteristic points of flow curves was studied using the power law relation,and the ratio of critical stress and strain to peak stress and strain were found to be 0.91and0.46,respectively.展开更多
In this paper, the thermal field of double wire welding is simulated by using ANSYS software. Simulation results were shown that the total heat input (E) is the most significant parameters to change the value of t8/5;...In this paper, the thermal field of double wire welding is simulated by using ANSYS software. Simulation results were shown that the total heat input (E) is the most significant parameters to change the value of t8/5;By the mean of rationally controlling the proportion of the front arc heat input (E1) in the total heat input (E) and appropriately selecting double wire spacing (L), It is effective means to get the double wire welding thermal cycle. By the way of simulation, it is possible to manage the thermal input in the double welding wires and to control the temperature field and cooling rate that are fundamental for the final joint quality, it is great importance guidance to optimize the double wire welding process parameters.展开更多
A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East C...A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general pictre data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.展开更多
Engineering practice has shown that early faults of gearboxes are a leading maintenance cost driver that can easily lower the profit from a wind turbine operation.A novel oil-lubricated electrostatic monitoring of wea...Engineering practice has shown that early faults of gearboxes are a leading maintenance cost driver that can easily lower the profit from a wind turbine operation.A novel oil-lubricated electrostatic monitoring of wear debris for a wind turbine gearbox is presented.The continuous wavelet transform(CWT)is used to eliminate the noises of the original electrostatic signal.The kurtosis and root mean square(RMS)values of the time domain signal are extracted as the characteristic parameters to reflect the deterioration of the gearbox.The overall tendency of electrostatic signals in accelerated life test is analyzed.In the eighth cycle,the abnormal wear in the wind turbine gearbox is detected by electrostatic monitoring.A comparison with the popular MetalScan monitoring is given to illustrate the effectiveness of the electrostatic monitoring method.The results demonstrate that the electrostatic monitoring method can detect the fault accurately.展开更多
The numerical simulation of polymer flooding is a complex task as this process involves complex physical and chemical reactions,and multiple sets of characteristic parameters are required to properly set the simulatio...The numerical simulation of polymer flooding is a complex task as this process involves complex physical and chemical reactions,and multiple sets of characteristic parameters are required to properly set the simulation.At present,such characteristic parameters are mainly obtained by empirical methods,which typically result in relatively large errors.By analyzing experimentally polymer adsorption,permeability decline,inaccessible pore volume,viscosity-concentration relationship,and rheology,in this study,a conversion equation is provided to convert the experimental data into the parameters needed for the numerical simulation.Some examples are provided to demonstrate the reliability of the proposed approach.展开更多
Three progressive stages of testing techniques are elaborated,which are en-tirely manual operating,taking separate instruments testing and computer program con-trolling.The testing method and principle are detailed ba...Three progressive stages of testing techniques are elaborated,which are en-tirely manual operating,taking separate instruments testing and computer program con-trolling.The testing method and principle are detailed based on the testing process formeteorological parameters,air pressure,air quality and rotating velocity.And every testingtechnique is analyzed.Finally, the technique outlook is viewed.All this plays a leading rolein development of the testing techniques.展开更多
High-rise reinforced concrete buildings are in great demand in developing countries with rapid urbanization. Construction engineers are facing more and more safety control challenges. One major issue is the understand...High-rise reinforced concrete buildings are in great demand in developing countries with rapid urbanization. Construction engineers are facing more and more safety control challenges. One major issue is the understanding of the load distributions, especially the maximum slab load, of structures under construction, which is time dependent. Previous methods were mainly targeted to specific examples, providing specific solutions without addressing the fundamental issues of finding general solutions for load distributions in reinforced concrete buildings with different geometrical and material characteristics during construction. The concept of a structural characteristic parameter is used here to parametedze the main geometrical and material characteristics of concrete structures for generalized assessments of load distributions during construction. The maximum slab load for 20 different construction shoring/reshoring schemes is presented. The results indicate that the traditional simplified method may underestimate or overestimate the maximum slab load, depending mainly on the shoring/reshoring schemes. The structural characteristic parameter approach was specifically developed to assist construction engineers to estimate load distributions to assure safe construction procedures.展开更多
We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empi...We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight functions from Huˇskov′a and Meintanis(2006) plus the weight function used by Matteson and James(2014),where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose an algorithm for choosing an appropriate value of a, denoted by a_s which is also justified. Our simulation study shows that the change point estimate obtained by using a_s has a satisfactory performance. We also apply our method to a real dataset.展开更多
基金Supported by the National Key Basic Research Development Program of China(973 Program)(2007CB607605)the National Natural Science Foundation of China(50965008)
文摘The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.
文摘According to the time-resolved spectra of lightning return stroke process and based on the plasma transmission theory,the evolution characteristics of the thermal conductivity and thermal diffusion coefficient of the discharge channel over time during the lightning return stroke are discussed.The radial distribution of the channel temperature in the lightning peak current phase is calculated,and the heat transfer along the radial direction of the channel is analyzed.The calculated transmission characteristic parameter values of the lightning discharge channel are all in a reasonable range.The results show that the heat transport coefficient of the lightning channel is closely related to the channel temperature and electron density.After returning to the peak current,the channel temperature slowly decreases,and the transport coefficient shows a non-linear and monotonous decay trend.The closer to the current core channel is,the greater the temperature gradient is,and the more the heat transferred radially outward is.
基金The National Natural Science Foundation of China under contract No.61871353。
文摘A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing.
基金Supported by the National Natural Science Foundation of China (61772159)
文摘Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.
基金Sponsored by National Science and Technology Support Plan of China(2011AA060104)
文摘Compared with non-gray model,equivalent gray model has equal calculation accuracy but much higher computing speed.To solve the existing problems of the equivalent gray method,sole ternary model was developed.In the model,coupling solving process of energy balance equations is omitted and the model zone is real closed.Meanwhile,the full furnace temperature and heat flow calculations are avoided,which makes it easier to find the relationship between the equivalent gray gas radiation characteristic parameter and the initial conditions.The radiation characteristic parameter was calculated with different temperature combinations,different model zone sizes and different partial pressures of absorbent gas.The results show the similar variations in the absorption coefficient and emissivity for the equivalent gray model,which both decrease with the increase of the gas temperature and the surface temperature(especially the former one)as well as the model zone size while increase with the increase of the partial pressure of absorbent gas.
文摘The geometrical parameters of impeller or volute casing (including guide vane ofmultistage pump) have a great effect on pump characteristics, but ultimately. the pump characteris-tics are determined by the geometrical parameters of impeller and volute casing cooperatively. Inthis essay the effect of impeller and volute casing on pump characteristics will be studiedquantitatvely from the angle cf optimal matching of them.
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金Project(51304238)supported by the National Natural Science Foundation of ChinaProject(JSK200206)supported by the Foundation of Key Laboratory of Mine Thermo-motive Disaster and Prevention,Ministry of Education,China
文摘In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9 have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 ℃, 239 ℃, 220 ℃ and 220 ℃, respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples 1, 2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6, sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the reliability of measured results.
基金The study was supported by the National Natural Science Foundation of China of basic theory research on digital coal mine and intelligent mining(51834006)study on stress,cyclic osmotic pressure and corrosion coupling damage mechanism of coal pillar dam for coalmine underground reservoir(52004124)study on the progressive evolution mechanism of overburden fracture and ore pressure in fully mechanized mining with super high mining height under three field perspectives(51874175)。
文摘Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof disasters.This paper summarized and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters.This work also proposed monitoring characteristic parameters of roof disasters based on support posture-load changes,such as the support location and support posture.The data feature decomposition method of the additive model was used with the monitoring load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend,cycle period,and residuals,which provided the period weighting characteristics of the longwall face.The autoregressive,long-short term memory,and support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions.The seasonal autoregressive integrated moving average(SARIMA)and autoregressive integrated moving average(ARIMA)models were adopted to predict the support cycle load of the hydraulic support.The SARIMA model is shown to be better than the ARIMA model for load predictions in one support cycle,but the prediction effect of these two algorithms over a fracture cycle is poor.Therefore,we proposed a hydraulic support load prediction method based on multiple data cutting and a hydraulic support load template library.The constructed technical framework of the roof disaster intelligent prediction platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture monitoring information from the hydraulic support.
基金supported by the National Natural Science Foundation of China (No.U2133210).
文摘Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.
基金the Postdoctoral Science Foundation of China (No. 2004036396)the Foundation of 985- Automotive Engineering of Jilin University
文摘To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.
基金supported by National Natural Science Foundation of China (No.50275028)
文摘A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.
基金Sponsored by National Natural Science Foundation of China(51071019,51371030)National High Technology Research and Development Program of China(2013AA031601)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE25B01)
文摘Hot deformation behavior of a novel Ni-Cr-Mo-B heavy plate steel was studied by hot compression tests,which were conducted on a Gleeble-3800thermo-mechanical simulator corresponding to the temperature range of850-1 150℃ with the strain rates of 0.01-10s-1 and the true strain of 0.8.The results suggest that the majority of flow curves exhibit a typical dynamic recrystallization(DRX)behavior with an apparent single peak stress followed by agradual fall towards a steady-state stress.Important characteristic parameters of flow behavior as critical stress/strain for initiation of DRX and peak and steady-state stress/strain were derived from curves of strain hardening rate versus stress and stress versus strain,respectively.Material constants of the investigated steel were determined based on Arrhenius-type constitutive equation,and then the peak stress was predicted by the equation with the hot deformation activation energy of 379 139J/mol,and the predicted values agree well with the experimental values.Furthermore,the effect of Zener-Hollomon parameter on the characteristic points of flow curves was studied using the power law relation,and the ratio of critical stress and strain to peak stress and strain were found to be 0.91and0.46,respectively.
文摘In this paper, the thermal field of double wire welding is simulated by using ANSYS software. Simulation results were shown that the total heat input (E) is the most significant parameters to change the value of t8/5;By the mean of rationally controlling the proportion of the front arc heat input (E1) in the total heat input (E) and appropriately selecting double wire spacing (L), It is effective means to get the double wire welding thermal cycle. By the way of simulation, it is possible to manage the thermal input in the double welding wires and to control the temperature field and cooling rate that are fundamental for the final joint quality, it is great importance guidance to optimize the double wire welding process parameters.
基金Shandong Natural Science Fund (No.Y2007G32)the Doctoral Fund of Qingdao University of Science & Technology (No.0022143).
文摘A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general pictre data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.
基金co-supported by the National Natural Science Foundation of China(Nos.61403198,BK20140827 and U1233114)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0313)+1 种基金the Fundamental Research Funds for the Central Universities(No.NS2015072)the support provided by China Scholarship Council(No.201606830028)
文摘Engineering practice has shown that early faults of gearboxes are a leading maintenance cost driver that can easily lower the profit from a wind turbine operation.A novel oil-lubricated electrostatic monitoring of wear debris for a wind turbine gearbox is presented.The continuous wavelet transform(CWT)is used to eliminate the noises of the original electrostatic signal.The kurtosis and root mean square(RMS)values of the time domain signal are extracted as the characteristic parameters to reflect the deterioration of the gearbox.The overall tendency of electrostatic signals in accelerated life test is analyzed.In the eighth cycle,the abnormal wear in the wind turbine gearbox is detected by electrostatic monitoring.A comparison with the popular MetalScan monitoring is given to illustrate the effectiveness of the electrostatic monitoring method.The results demonstrate that the electrostatic monitoring method can detect the fault accurately.
基金supported by Hubei Provincial Natural Science Foundation of China(Grant No.2020CFB377)the National Natural Science Foundation of China(Grant No.52104020).
文摘The numerical simulation of polymer flooding is a complex task as this process involves complex physical and chemical reactions,and multiple sets of characteristic parameters are required to properly set the simulation.At present,such characteristic parameters are mainly obtained by empirical methods,which typically result in relatively large errors.By analyzing experimentally polymer adsorption,permeability decline,inaccessible pore volume,viscosity-concentration relationship,and rheology,in this study,a conversion equation is provided to convert the experimental data into the parameters needed for the numerical simulation.Some examples are provided to demonstrate the reliability of the proposed approach.
文摘Three progressive stages of testing techniques are elaborated,which are en-tirely manual operating,taking separate instruments testing and computer program con-trolling.The testing method and principle are detailed based on the testing process formeteorological parameters,air pressure,air quality and rotating velocity.And every testingtechnique is analyzed.Finally, the technique outlook is viewed.All this plays a leading rolein development of the testing techniques.
基金Supported by the National Natural Science Foundation of China (Nos.50378051,70172005,and 70572007)the National Science and Technology Planning Project (No.2006BAJ01B04-03)
文摘High-rise reinforced concrete buildings are in great demand in developing countries with rapid urbanization. Construction engineers are facing more and more safety control challenges. One major issue is the understanding of the load distributions, especially the maximum slab load, of structures under construction, which is time dependent. Previous methods were mainly targeted to specific examples, providing specific solutions without addressing the fundamental issues of finding general solutions for load distributions in reinforced concrete buildings with different geometrical and material characteristics during construction. The concept of a structural characteristic parameter is used here to parametedze the main geometrical and material characteristics of concrete structures for generalized assessments of load distributions during construction. The maximum slab load for 20 different construction shoring/reshoring schemes is presented. The results indicate that the traditional simplified method may underestimate or overestimate the maximum slab load, depending mainly on the shoring/reshoring schemes. The structural characteristic parameter approach was specifically developed to assist construction engineers to estimate load distributions to assure safe construction procedures.
基金supported by Natural Sciences and the Engineering Research Council of Canada (Grant No. 105557-2012)National Natural Science Foundation for Young Scientists of China (Grant No. 11201108)+1 种基金the National Statistical Research Plan Project (Grant No. 2012LZ009)the Humanities and Social Sciences Project from Ministry of Education of China (Grant No. 12YJC910007)
文摘We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight functions from Huˇskov′a and Meintanis(2006) plus the weight function used by Matteson and James(2014),where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose an algorithm for choosing an appropriate value of a, denoted by a_s which is also justified. Our simulation study shows that the change point estimate obtained by using a_s has a satisfactory performance. We also apply our method to a real dataset.