Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo...Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.展开更多
In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor between two coupled unified chaotic systems to a desired value, based on the invarianee principle of diffe...In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor between two coupled unified chaotic systems to a desired value, based on the invarianee principle of differential equations. Under this control strategy, one can arbitrarily select the scaling factor. Numerical simulations are given to support the effectiveness of the proposed method and show the robustness against noise. Furthermore, a secure communication scheme based on the adaptive projective synchronization of unified chaotic systems is presented and numerical simulation shows its feasibility.展开更多
Chaotic communication is a rather new and active field of research. Althoughit is expected to have promising advantages, some investigators provide evidences that chaoticcommunication is not safety. This letter provid...Chaotic communication is a rather new and active field of research. Althoughit is expected to have promising advantages, some investigators provide evidences that chaoticcommunication is not safety. This letter provides a new chaotic secure communication scheme based ona generalized synchronization theory of coupled system. The secret message hidden in the chaoticsource signal generated via the scheme is very difficult to be unmasked by so-called nonlineardynamic forecasting technique. One example for Internet communications was presented to illustratethe security of our scheme.展开更多
In this paper, the authors design a novel chaotic secure communication system, which has high security and good error correcting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. S...In this paper, the authors design a novel chaotic secure communication system, which has high security and good error correcting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. Secondly, chaotic turbo encoder/decoder (hard decision) is introduced. Thirdly, this chaotic secure communication system, which comprises the Henon CSK modulation block and chaotic turbo encoder in a serially concatenated form, is shown. Furthermore, a novel two step encryption scheme is proposed, which is based on the chaotic turbo encoded Henon CSK secure communication system.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this p...Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.展开更多
Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In ...Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.展开更多
A scheme of chaotic secure communication based on the parameter modulation and the inversion of a chaotic dynamical system is analyzed. According to this scheme, information signal is modulated by a bifurcation parame...A scheme of chaotic secure communication based on the parameter modulation and the inversion of a chaotic dynamical system is analyzed. According to this scheme, information signal is modulated by a bifurcation parameter of the transmitter, which is in chaotic state. In the receiver, a proportional integral feedback demodulator is used to demodulate the information signal, which only uses the available synchronizing error as well as stateness of receiver. The purpose of this demodulator is proposed to overcome the influence of differentiation operation, nonlinear part and singularities in chaotic system. Numerical simulation is proposed to show the effectiveness of this demodulator.展开更多
Discrete chaotic systems are used for bi-directlonal secure communication. Both sides of communication keep sending signals to achieve their synchronization, and then recover the messages. However, the third side with...Discrete chaotic systems are used for bi-directlonal secure communication. Both sides of communication keep sending signals to achieve their synchronization, and then recover the messages. However, the third side without keys cannot get useful information. Known-plaintext attack is also engaged to analyze this method, and the simulation results show that the proposed method can reach high security performance.展开更多
The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new ch...The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.展开更多
Chaotic systems produce pseudo-random sequences with good randomness;therefore, these systems are suitable to efficient image encryption. In this paper, a low complexity image encryption based on Nested Piece Wise Lin...Chaotic systems produce pseudo-random sequences with good randomness;therefore, these systems are suitable to efficient image encryption. In this paper, a low complexity image encryption based on Nested Piece Wise Linear Chaotic Map (NPWLCM) is proposed. Bit planes of the grey or color levels are shuffled to increase the encryption complexity. A security analysis of the proposed system is performed and presented. The proposed method combine pixel shuffling, bit shuffling, and diffusion, which is highly disorder the original image. The initial values and the chaos control parameters of NPWLCM maps are derived from external secret key. The cipher image generated by this method is the same size as the original image and is suitable for practical use in the secure transmission of confidential information over the Internet. The experimental results of the proposed method show advantages of low complexity, and high-level security.展开更多
The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation(4G)and 5th generation(5G)etc.Research...The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation(4G)and 5th generation(5G)etc.Researchers have proposed many image encryption algorithms based on the classical random walk and chaos theory for sharing an image in a secure way.Instead of the classical random walk,this paper proposes the quantum walk to achieve high image security.Classical random walk exhibits randomness due to the stochastic transitions between states,on the other hand,the quantum walk is more random and achieve randomness due to the superposition,and the interference of the wave functions.The proposed image encryption scheme is evaluated using extensive security metrics such as correlation coefficient,entropy,histogram,time complexity,number of pixels change rate and unified average intensity etc.All experimental results validate the proposed scheme,and it is concluded that the proposed scheme is highly secured,lightweight and computationally efficient.In the proposed scheme,the values of the correlation coefficient,entropy,mean square error(MSE),number of pixels change rate(NPCR),unified average change intensity(UACI)and contrast are 0.0069,7.9970,40.39,99.60%,33.47 and 10.4542 respectively.展开更多
Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the secur...Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the security of these sys-tems.Biometric systems provide sufficient protection and privacy for users.The recently-introduced cancellable biometric recognition systems have not been investigated in the presence of different types of attacks.In addition,they have not been studied on different and large biometric datasets.Another point that deserves consideration is the hardware implementation of cancellable biometric recognition systems.This paper presents a suggested hybrid cancellable biometric recognition system based on a 3D chaotic cryptosystem.The rationale behind the utilization of the 3D chaotic cryptosystem is to guarantee strong encryption of biometric templates,and hence enhance the security and privacy of users.The suggested cryptosystem adds significant permutation and diffusion to the encrypted biometric templates.We introduce some sort of attack analysis in this paper to prove the robustness of the proposed cryptosystem against attacks.In addition,a Field Programmable Gate Array(FPGA)implementation of the pro-posed system is introduced.The obtained results with the proposed cryptosystem are compared with those of the traditional encryption schemes,such as Double Random Phase Encoding(DRPE)to reveal superiority,and hence high recogni-tion performance of the proposed cancellable biometric recognition system.The obtained results prove that the proposed cryptosystem enhances the security and leads to better efficiency of the cancellable biometric recognition system in the presence of different types of attacks.展开更多
In this paper, we conduct research on the security enhancement model of communication system based on the chaotic encryption and analytic hierarchy process. The communication of the information network is completed by...In this paper, we conduct research on the security enhancement model of communication system based on the chaotic encryption and analytic hierarchy process. The communication of the information network is completed by the communication protocol. The communication protocol can be divided into application layer, transport layer, network layer, link layer and physical layer. By using the communication protocol, the security control of the network communication can meet the needs of the information network security communication. This paper integrates the chaos system to further implement the robust system architecture. The algorithm of this paper tries to make the maximum value of the above three parameters in each iteration step by step and the output feedback to dynamically change these parameters. Compared with other algorithms, our method can adopt more related theories to perform the better result.展开更多
Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challen...Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.展开更多
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da...Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.展开更多
The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor no...The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor noise resistance.To overcome these issues,a novel fractional-order chaotic system incorporating a memristor emulator derived from the Shinriki oscillator is proposed.The main contribution lies in the enhanced dynamic complexity and flexibility of the proposed architecture,making it suitable for cryptographic applications.Furthermore,the feasibility of synchronization to ensure secure data transmission is demonstrated through the validation of two strategies:an active control method ensuring asymptotic convergence,and a finite-time control method enabling faster stabilization.The robustness of the scheme is confirmed by simulation results on a color image:χ^(2)=253/237/267(R/G/B);entropy≈7.993;correlations between adjacent pixels in all directions are close to zero(e.g.,-0.0318 vertically);and high number of pixel change rate and unified average changing intensity(e.g.,33.40%and 99.61%,respectively).Peak signal-to-noise ratio analysis shows that resilience to noise and external disturbances is maintained.It is shown that multiple fractional orders further enrich the chaotic behavior,increasing the systems suitability for secure communication in embedded environments.These findings highlight the relevance of fractional-order chaotic memristive systems for lightweight secure transmission applications.展开更多
In secure communications,lightweight encryption has become crucial,particularly for resource-constrained applications such as embedded devices,wireless sensor networks,and the Internet of Things(IoT).As these systems ...In secure communications,lightweight encryption has become crucial,particularly for resource-constrained applications such as embedded devices,wireless sensor networks,and the Internet of Things(IoT).As these systems proliferate,cryptographic approaches that provide robust security while minimizing computing overhead,energy consumption,and memory usage are becoming increasingly essential.This study examines lightweight encryption techniques utilizing chaotic maps to ensure secure data transmission.Two algorithms are proposed,both employing the Logistic map;the first approach utilizes two logistic chaotic maps,while the second algorithm employs a single logistic chaotic map.Algorithm 1,including a two-stage mechanism that uses chaotic maps for both transposition and key generation,is distinguished by its robustness,guaranteeing a secure encryption method.The second techniqueutilized a single logistic chaoticmapeliminating the secondchaoticmapdecreases computing complexity while maintaining security.The efficacy of both algorithms was evaluated by subjecting them to NIST randomness tests following testing on text files of varying sizes.The findings demonstrate that the double chaotic map method regularly achieves elevated unpredictability and resilience.Conversely,the singular chaotic algorithm markedly lowers the duration necessary for encryption and decryption.These data suggest that while both algorithms are effective,their choice may be contingent upon specific security and processing speed requirements in practical applications.展开更多
A new kind of secure communication system which combines the chaotic encryption means with the conventional encryption method is discussed. With the analysis results and the experiment data, the anti-attack ability of...A new kind of secure communication system which combines the chaotic encryption means with the conventional encryption method is discussed. With the analysis results and the experiment data, the anti-attack ability of this communication system is significantly improved compared to that of the either method. At the same time, a new method of chaotic synchronization is proposed. With a small mixed discrete chaotic signal, it is quickly to synchronize the communication and a good security performance is ensured.展开更多
基金supported by the Large Group Project under grant number(RGP2/473/46).
文摘Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10372054 and 60575038) and the Science Foundation of Southern Yangtze University of China (Grant No 000408).
文摘In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor between two coupled unified chaotic systems to a desired value, based on the invarianee principle of differential equations. Under this control strategy, one can arbitrarily select the scaling factor. Numerical simulations are given to support the effectiveness of the proposed method and show the robustness against noise. Furthermore, a secure communication scheme based on the adaptive projective synchronization of unified chaotic systems is presented and numerical simulation shows its feasibility.
基金This project is jointly supported by the National Natural Science Foundation of China (No.60074034, 70271068), the Research Fund for the Doctoral Program of Higher Education (N0.200200080004) and the Foundation for University Key Teacher by the Ministry
文摘Chaotic communication is a rather new and active field of research. Althoughit is expected to have promising advantages, some investigators provide evidences that chaoticcommunication is not safety. This letter provides a new chaotic secure communication scheme based ona generalized synchronization theory of coupled system. The secret message hidden in the chaoticsource signal generated via the scheme is very difficult to be unmasked by so-called nonlineardynamic forecasting technique. One example for Internet communications was presented to illustratethe security of our scheme.
文摘In this paper, the authors design a novel chaotic secure communication system, which has high security and good error correcting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. Secondly, chaotic turbo encoder/decoder (hard decision) is introduced. Thirdly, this chaotic secure communication system, which comprises the Henon CSK modulation block and chaotic turbo encoder in a serially concatenated form, is shown. Furthermore, a novel two step encryption scheme is proposed, which is based on the chaotic turbo encoded Henon CSK secure communication system.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
文摘Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.
文摘Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.
文摘A scheme of chaotic secure communication based on the parameter modulation and the inversion of a chaotic dynamical system is analyzed. According to this scheme, information signal is modulated by a bifurcation parameter of the transmitter, which is in chaotic state. In the receiver, a proportional integral feedback demodulator is used to demodulate the information signal, which only uses the available synchronizing error as well as stateness of receiver. The purpose of this demodulator is proposed to overcome the influence of differentiation operation, nonlinear part and singularities in chaotic system. Numerical simulation is proposed to show the effectiveness of this demodulator.
文摘Discrete chaotic systems are used for bi-directlonal secure communication. Both sides of communication keep sending signals to achieve their synchronization, and then recover the messages. However, the third side without keys cannot get useful information. Known-plaintext attack is also engaged to analyze this method, and the simulation results show that the proposed method can reach high security performance.
基金supported in part by the National Science Foundation Project of China (61931001, 61873026)the National Key R&D Program of China (2017YFC0820700)
文摘The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.
文摘Chaotic systems produce pseudo-random sequences with good randomness;therefore, these systems are suitable to efficient image encryption. In this paper, a low complexity image encryption based on Nested Piece Wise Linear Chaotic Map (NPWLCM) is proposed. Bit planes of the grey or color levels are shuffled to increase the encryption complexity. A security analysis of the proposed system is performed and presented. The proposed method combine pixel shuffling, bit shuffling, and diffusion, which is highly disorder the original image. The initial values and the chaos control parameters of NPWLCM maps are derived from external secret key. The cipher image generated by this method is the same size as the original image and is suitable for practical use in the secure transmission of confidential information over the Internet. The experimental results of the proposed method show advantages of low complexity, and high-level security.
文摘The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation(4G)and 5th generation(5G)etc.Researchers have proposed many image encryption algorithms based on the classical random walk and chaos theory for sharing an image in a secure way.Instead of the classical random walk,this paper proposes the quantum walk to achieve high image security.Classical random walk exhibits randomness due to the stochastic transitions between states,on the other hand,the quantum walk is more random and achieve randomness due to the superposition,and the interference of the wave functions.The proposed image encryption scheme is evaluated using extensive security metrics such as correlation coefficient,entropy,histogram,time complexity,number of pixels change rate and unified average intensity etc.All experimental results validate the proposed scheme,and it is concluded that the proposed scheme is highly secured,lightweight and computationally efficient.In the proposed scheme,the values of the correlation coefficient,entropy,mean square error(MSE),number of pixels change rate(NPCR),unified average change intensity(UACI)and contrast are 0.0069,7.9970,40.39,99.60%,33.47 and 10.4542 respectively.
文摘Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the security of these sys-tems.Biometric systems provide sufficient protection and privacy for users.The recently-introduced cancellable biometric recognition systems have not been investigated in the presence of different types of attacks.In addition,they have not been studied on different and large biometric datasets.Another point that deserves consideration is the hardware implementation of cancellable biometric recognition systems.This paper presents a suggested hybrid cancellable biometric recognition system based on a 3D chaotic cryptosystem.The rationale behind the utilization of the 3D chaotic cryptosystem is to guarantee strong encryption of biometric templates,and hence enhance the security and privacy of users.The suggested cryptosystem adds significant permutation and diffusion to the encrypted biometric templates.We introduce some sort of attack analysis in this paper to prove the robustness of the proposed cryptosystem against attacks.In addition,a Field Programmable Gate Array(FPGA)implementation of the pro-posed system is introduced.The obtained results with the proposed cryptosystem are compared with those of the traditional encryption schemes,such as Double Random Phase Encoding(DRPE)to reveal superiority,and hence high recogni-tion performance of the proposed cancellable biometric recognition system.The obtained results prove that the proposed cryptosystem enhances the security and leads to better efficiency of the cancellable biometric recognition system in the presence of different types of attacks.
文摘In this paper, we conduct research on the security enhancement model of communication system based on the chaotic encryption and analytic hierarchy process. The communication of the information network is completed by the communication protocol. The communication protocol can be divided into application layer, transport layer, network layer, link layer and physical layer. By using the communication protocol, the security control of the network communication can meet the needs of the information network security communication. This paper integrates the chaos system to further implement the robust system architecture. The algorithm of this paper tries to make the maximum value of the above three parameters in each iteration step by step and the output feedback to dynamically change these parameters. Compared with other algorithms, our method can adopt more related theories to perform the better result.
基金supported by the National Natural Science Foundation of China(Grant Nos.61927811,62035009,and 11974258)the Fundamental Research Program of Shanxi Province(Grant No.202103021224038)+3 种基金the Development Fund in Science and Technology of Shanxi Province(Grant No.YDZJSX2021A009)the Open Fund of State Key Laboratory of Applied Optics(Grant No.SKLAO2022001A09)the Science and Technology Foundation of Guizhou Province(Grant Nos.ZK[2021]031 and ZK[2023]049)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams.
文摘Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.
文摘The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor noise resistance.To overcome these issues,a novel fractional-order chaotic system incorporating a memristor emulator derived from the Shinriki oscillator is proposed.The main contribution lies in the enhanced dynamic complexity and flexibility of the proposed architecture,making it suitable for cryptographic applications.Furthermore,the feasibility of synchronization to ensure secure data transmission is demonstrated through the validation of two strategies:an active control method ensuring asymptotic convergence,and a finite-time control method enabling faster stabilization.The robustness of the scheme is confirmed by simulation results on a color image:χ^(2)=253/237/267(R/G/B);entropy≈7.993;correlations between adjacent pixels in all directions are close to zero(e.g.,-0.0318 vertically);and high number of pixel change rate and unified average changing intensity(e.g.,33.40%and 99.61%,respectively).Peak signal-to-noise ratio analysis shows that resilience to noise and external disturbances is maintained.It is shown that multiple fractional orders further enrich the chaotic behavior,increasing the systems suitability for secure communication in embedded environments.These findings highlight the relevance of fractional-order chaotic memristive systems for lightweight secure transmission applications.
文摘In secure communications,lightweight encryption has become crucial,particularly for resource-constrained applications such as embedded devices,wireless sensor networks,and the Internet of Things(IoT).As these systems proliferate,cryptographic approaches that provide robust security while minimizing computing overhead,energy consumption,and memory usage are becoming increasingly essential.This study examines lightweight encryption techniques utilizing chaotic maps to ensure secure data transmission.Two algorithms are proposed,both employing the Logistic map;the first approach utilizes two logistic chaotic maps,while the second algorithm employs a single logistic chaotic map.Algorithm 1,including a two-stage mechanism that uses chaotic maps for both transposition and key generation,is distinguished by its robustness,guaranteeing a secure encryption method.The second techniqueutilized a single logistic chaoticmapeliminating the secondchaoticmapdecreases computing complexity while maintaining security.The efficacy of both algorithms was evaluated by subjecting them to NIST randomness tests following testing on text files of varying sizes.The findings demonstrate that the double chaotic map method regularly achieves elevated unpredictability and resilience.Conversely,the singular chaotic algorithm markedly lowers the duration necessary for encryption and decryption.These data suggest that while both algorithms are effective,their choice may be contingent upon specific security and processing speed requirements in practical applications.
文摘A new kind of secure communication system which combines the chaotic encryption means with the conventional encryption method is discussed. With the analysis results and the experiment data, the anti-attack ability of this communication system is significantly improved compared to that of the either method. At the same time, a new method of chaotic synchronization is proposed. With a small mixed discrete chaotic signal, it is quickly to synchronize the communication and a good security performance is ensured.