期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
1
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 Particle SWARM algorithm chaotic SEQUENCES SELF-ADAPTIVE STRATEGY multi-objective optimization
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
2
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved Particle SWARM optimization algorithm Double POPULATIONS multi-objective Adaptive Strategy chaotic SEQUENCE
在线阅读 下载PDF
Chaotic Genetic Algorithm-Based Forest Harvest Adjustment
3
作者 李金铭 王梅芳 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期148-151,共4页
Forest harvesting adjustment is a decision-making,large and complex system. In this paper,we analysis the shortcomings of the traditional harvest adjustment problems,and establish the model of multi-target harvest adj... Forest harvesting adjustment is a decision-making,large and complex system. In this paper,we analysis the shortcomings of the traditional harvest adjustment problems,and establish the model of multi-target harvest adjustment. As intelligent optimization,chaotic genetic algorithm has the parallel mechanism and the inherent global optimization characteristics which are suitable for multi-objective planning the settlement of the issue,specially in complex occasions where there are many objective functions and optimize variables. In order to solve the problem of forest harvesting adjustment,this paper introduces a genetic algorithm to the Forest Farm of Qiujia Liancheng Longyan for forest harvesting adjustment firstly. And the experimental result shows that the method is feasible and effective,and it can provide satisfactory solution for policy makers. 展开更多
关键词 forest harvest adjustment multi-objective planning chaotic genetic algorithm optimal model
在线阅读 下载PDF
基于混沌多目标蚁狮优化算法和核极限学习机的冲击性负荷预测模型 被引量:2
4
作者 黄裕春 贾巍 +3 位作者 雷才嘉 方兵华 刘涌 李洋洋 《现代电力》 北大核心 2023年第6期1043-1051,共9页
针对冲击性负荷预测问题,提出了一种基于混沌多目标蚁狮优化算法(chaotic multi-objective antlion optimization algorithm,CMOALO)和核极限学习机(kernel extreme learning machine,KELM)的冲击性负荷预测模型。首先,为了降低预测难度... 针对冲击性负荷预测问题,提出了一种基于混沌多目标蚁狮优化算法(chaotic multi-objective antlion optimization algorithm,CMOALO)和核极限学习机(kernel extreme learning machine,KELM)的冲击性负荷预测模型。首先,为了降低预测难度,使用集合经验模式分解(ensemble empirical mode decomposition,EEMD)将原始冲击性负荷分解为一系列更为平稳的子序列。为了同时提升模型的预测精度和稳定性,提出了一种MOALO;其次,为进一步提高算法的解搜索能力,将MOALO与混沌运算融合,提出了CMOALO算法,将其用于优化KELM。最后通过某地区真实采集的冲击性负荷数据对所提出的EEMD-CMOALOKELM模型进行验证。通过案例分析可知,所提出的冲击性负荷预测模型,无论是在预测精度还是预测稳定性方面,性能最好。 展开更多
关键词 冲击性负荷预测 集合经验模式分解 混沌多目标蚁狮优化算法 核极限学习机
原文传递
基于逻辑自映射和Beta变异的混沌蚁狮优化算法
5
作者 胡元娇 郭玉纯 《计算机与数字工程》 2020年第7期1611-1616,共6页
蚁狮优化算法是受自然界中蚁狮捕食蚂蚁的行为提出的群智能优化算法。针对基本蚁狮优化算法存在易陷入局部最优的缺点,论文提出一种基于逻辑自映射和Beta变异的混沌蚁狮优化算法。在基本蚁狮优化算法中引入逻辑自映射混沌序列优化精英个... 蚁狮优化算法是受自然界中蚁狮捕食蚂蚁的行为提出的群智能优化算法。针对基本蚁狮优化算法存在易陷入局部最优的缺点,论文提出一种基于逻辑自映射和Beta变异的混沌蚁狮优化算法。在基本蚁狮优化算法中引入逻辑自映射混沌序列优化精英个体,使用Beta变异策略对适应度值较差的种群个体进行变异,使得算法能有效跳出局部极值。对Benchmark基准函数的寻优测试表明,改进后的算法与基本蚁狮优化算法和粒子群算法相比,其寻优速率、收敛精度及算法稳定性更佳。 展开更多
关键词 蚁狮优化算法 逻辑自映射 Beta变异 混沌
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部