The non_linear chaotic model reconstruction is the major important quantitative index for describing accurate experimental data obtained in dynamic analysis. A lot of work has been done to distinguish chaos from rando...The non_linear chaotic model reconstruction is the major important quantitative index for describing accurate experimental data obtained in dynamic analysis. A lot of work has been done to distinguish chaos from randomness, to calulate fractral dimension and Lyapunov exponent, to reconstruct the state space and to fix the rank of model. In this paper, a new improved EAR method is presented in modelling and predicting chaotic timeseries, and a successful approach to fast estimation algorithms is proposed. Some illustrative experimental data examples from known chaotic systems are presented, emphasising the increase in predicting error with time. The calculating results tell us that the parameter identification method in this paper can effectively adjust the initial value towards the global limit value of the single peak target function nearby. Then the model paremeter can immediately be obtained by using the improved optimization method rapidly, and non_linear chaotic models can not provide long period superior predictions. Applications of this method are listed to real data from widely different areas.展开更多
The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for ...The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches.展开更多
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with ...A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by u...We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.展开更多
The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural...The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural networks and wavelet theories, the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given. Based on wavelet networks, a new method for parameter identification was suggested, which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series. Through pre-treatment and comparison of results before and after the treatment, several useful conclusions are reached: High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.展开更多
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic syste...This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.展开更多
A hybrid dynamic model was proposed, which considered both the hydrokinetic and the chaotic properties of the blast furnace ironmaking process; and great emphasis was put on its mechanism. The new model took the high ...A hybrid dynamic model was proposed, which considered both the hydrokinetic and the chaotic properties of the blast furnace ironmaking process; and great emphasis was put on its mechanism. The new model took the high complexity of the blast furnace as well as the effects of main parameters of the model into account, and the predicted results were in very good agreement with actual data.展开更多
In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of mod...In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.展开更多
Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent var...Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.展开更多
By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in con...By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in contrast with the undelayed case, networks with delays can actually synchronize more easily. Specifically, for randomly distributed delays, time-delayed mutual coupling suppresses the chaotic behaviour by stabilizing a fixed point that is unstable for the uncoupled dynamical system.展开更多
Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time ser...Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.展开更多
We introduce the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry, especially in the frame of chaotic attractors for solving practical problems(generating ...We introduce the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry, especially in the frame of chaotic attractors for solving practical problems(generating hyperchaos; developing chaos based pseudo random number generator(CPRNG) and chaotic multistream PRNG; secure communication via synchronization). They can also be used in cryptography, generic algorithms in optimization, control, etc.展开更多
Forest harvesting adjustment is a decision-making,large and complex system. In this paper,we analysis the shortcomings of the traditional harvest adjustment problems,and establish the model of multi-target harvest adj...Forest harvesting adjustment is a decision-making,large and complex system. In this paper,we analysis the shortcomings of the traditional harvest adjustment problems,and establish the model of multi-target harvest adjustment. As intelligent optimization,chaotic genetic algorithm has the parallel mechanism and the inherent global optimization characteristics which are suitable for multi-objective planning the settlement of the issue,specially in complex occasions where there are many objective functions and optimize variables. In order to solve the problem of forest harvesting adjustment,this paper introduces a genetic algorithm to the Forest Farm of Qiujia Liancheng Longyan for forest harvesting adjustment firstly. And the experimental result shows that the method is feasible and effective,and it can provide satisfactory solution for policy makers.展开更多
This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise ...This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise subdivision which divides the overall fuzzy chaotic systems into a lot of sub-systems by a kind of algebraic description. These sub-systems have the same volume and shape characteristics. Secondly, a novel kind of control scheme which switches by the transfer of different operating sub-systems is proposed to achieve convergent stabilization conditions for the underlying controlled fuzzy chaotic systems. Finally, a numerical example is given to demonstrate the validity of the proposed methods.展开更多
This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as inpu...This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as input for the Integral Pulse Frequency Modulation (IPFM) model. Previous researches were proposed same methods such as one model of ECG signal synthetically based on RBF neural network, a model based on IPFM with random threshold, method was based on the estimation of produced signals which are dependent on autonomic nervous system using IPFM model with fixed threshold, a new method based on the theory of vector space that based on time-varying uses of IPMF model (TVTIPMF) and special functions, and two different methods for producing HRV signals with controlled characteristics and structure of time-frequency (TF) for using non-stationary HRV analysis. In this paper, several chaotic maps such as Logistic Map, Henon Map, Lorenz and Tent Map have been used. Also, effects of sympathetic and parasympathetic nervous system and an internal input to the SA node and their effects in HRV signals were evaluated. In the proposed method, output amount of integrator in IPFM model was compared with chaotic threshold level. Then, final output of IPFM model was characterized as the HR and HRV signal. So, from HR and HRV signals obtaining from this model, linear features such as Mean, Median, Variance, Standard Deviation, Maximum Range, Minimum Range, Mode, Amplitude Range and frequency spectrum, and non-linear features such as Lyapunov Exponent, Shanon Entropy, log Entropy, Threshold Entropy, sure Entropy and mode Entropy were extracted from artificial HRV and compared them with characteristics as extracted from natural HRV signal. Also, in this paper two patients that called high sympathetic Balance and Cardiovascular Autonomy Neuropathy (CAN) which is detected and evaluated by HRV signals were simulated. These signals by changing the values of the some coefficients of the normal simulated signal and with extracted frequency feature from these signals were simulated. For final generation of these abnormal signals, frequency features such as energy of low frequency band (EL), energy of high frequency band (HL), ratio of energy in low frequency band to the energy in high frequency band (EL/EH), ratio of energy in low frequency band to the energy in all frequency band (EL/ET) and ratio of energy in high frequency band to the energy in all frequency band (EH/ET) from abnormal signals were extracted and compared with these extracted values from normal signals. The results were closely correlated with the real data which confirm the effectiveness of the proposed model. Various signals derived from the output of this model can be used for final analysis of the HRV signals, such as arrhythmia detection and classification of ECG and HRV signals. One of the applications of the proposed model is the easy evaluation of diagnostic ECG signal processing devices. Such a model can also be used in signal compression and telemedicine application.展开更多
According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with v...According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with variable frame length and interpolation points. The core idea is that, using interpolation method to increase the available sample data, then modeling the chaos dynamics system with least square algorithm which based on the Bernstein polynomial to realize the forecasting. We use the local modeling method, looking for the optimum frame length and interpolation points in every frame to improve the predict peformance. The experimental results show that the proposed algorithm can improve the predictive ability effectively, decreasing the accumulation of iterative errors in multi-step prediction.展开更多
The paper not only studies the noise reduction methods of chaotic time series with noise and its reconstruction techniques, but also discusses prediction techniques of chaotic time series and its applications based on...The paper not only studies the noise reduction methods of chaotic time series with noise and its reconstruction techniques, but also discusses prediction techniques of chaotic time series and its applications based on chaotic data noise reduction. In the paper, we first decompose the phase space of chaotic time series to range space and null noise space. Secondly we restructure original chaotic time series in range space. Lastly on the basis of the above, we establish order of the nonlinear model and make use of the nonlinear model to predict some research. The result indicates that the nonlinear model has very strong ability of approximation function, and Chaos predict method has certain tutorial significance to the practical problems.展开更多
文摘The non_linear chaotic model reconstruction is the major important quantitative index for describing accurate experimental data obtained in dynamic analysis. A lot of work has been done to distinguish chaos from randomness, to calulate fractral dimension and Lyapunov exponent, to reconstruct the state space and to fix the rank of model. In this paper, a new improved EAR method is presented in modelling and predicting chaotic timeseries, and a successful approach to fast estimation algorithms is proposed. Some illustrative experimental data examples from known chaotic systems are presented, emphasising the increase in predicting error with time. The calculating results tell us that the parameter identification method in this paper can effectively adjust the initial value towards the global limit value of the single peak target function nearby. Then the model paremeter can immediately be obtained by using the improved optimization method rapidly, and non_linear chaotic models can not provide long period superior predictions. Applications of this method are listed to real data from widely different areas.
文摘The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches.
基金supported by the Natural Science Foundation of Guandong Province,China (Grant No 8351009001000002)the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)
文摘A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
文摘We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.
文摘The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural networks and wavelet theories, the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given. Based on wavelet networks, a new method for parameter identification was suggested, which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series. Through pre-treatment and comparison of results before and after the treatment, several useful conclusions are reached: High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.
基金Project supported in part by the National Natural Science Foundationof China (No. 60504024)the Specialized Research Fund for theDoctoral Program of Higher Education,China (No. 20060335022)+1 种基金theNatural Science Foundation of Zhejiang Province (No. Y106010),China the "151 Talent Project" of Zhejiang Province (Nos.05-3-1013 and 06-2-034),China
文摘This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
基金Item Sponsored by National Basic Research Programof China (2005EC000166) Ningbo Natural Science Foundation ofChina (2006A610032)
文摘A hybrid dynamic model was proposed, which considered both the hydrokinetic and the chaotic properties of the blast furnace ironmaking process; and great emphasis was put on its mechanism. The new model took the high complexity of the blast furnace as well as the effects of main parameters of the model into account, and the predicted results were in very good agreement with actual data.
文摘In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.
文摘Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.
基金Project supported by the National Natural Science Foundation of China (Grant No 10775060)in part by Doctoral Education Foundation of the Education Department of China and the Natural Science Foundation of Gansu Province
文摘By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in contrast with the undelayed case, networks with delays can actually synchronize more easily. Specifically, for randomly distributed delays, time-delayed mutual coupling suppresses the chaotic behaviour by stabilizing a fixed point that is unstable for the uncoupled dynamical system.
文摘Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.
文摘We introduce the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry, especially in the frame of chaotic attractors for solving practical problems(generating hyperchaos; developing chaos based pseudo random number generator(CPRNG) and chaotic multistream PRNG; secure communication via synchronization). They can also be used in cryptography, generic algorithms in optimization, control, etc.
文摘Forest harvesting adjustment is a decision-making,large and complex system. In this paper,we analysis the shortcomings of the traditional harvest adjustment problems,and establish the model of multi-target harvest adjustment. As intelligent optimization,chaotic genetic algorithm has the parallel mechanism and the inherent global optimization characteristics which are suitable for multi-objective planning the settlement of the issue,specially in complex occasions where there are many objective functions and optimize variables. In order to solve the problem of forest harvesting adjustment,this paper introduces a genetic algorithm to the Forest Farm of Qiujia Liancheng Longyan for forest harvesting adjustment firstly. And the experimental result shows that the method is feasible and effective,and it can provide satisfactory solution for policy makers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.50977008,60774048 and 60821063)the Program for Cheung Kong Scholars and National Basic Research Program of China (Grant No.2009CB320601)
文摘This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise subdivision which divides the overall fuzzy chaotic systems into a lot of sub-systems by a kind of algebraic description. These sub-systems have the same volume and shape characteristics. Secondly, a novel kind of control scheme which switches by the transfer of different operating sub-systems is proposed to achieve convergent stabilization conditions for the underlying controlled fuzzy chaotic systems. Finally, a numerical example is given to demonstrate the validity of the proposed methods.
文摘This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as input for the Integral Pulse Frequency Modulation (IPFM) model. Previous researches were proposed same methods such as one model of ECG signal synthetically based on RBF neural network, a model based on IPFM with random threshold, method was based on the estimation of produced signals which are dependent on autonomic nervous system using IPFM model with fixed threshold, a new method based on the theory of vector space that based on time-varying uses of IPMF model (TVTIPMF) and special functions, and two different methods for producing HRV signals with controlled characteristics and structure of time-frequency (TF) for using non-stationary HRV analysis. In this paper, several chaotic maps such as Logistic Map, Henon Map, Lorenz and Tent Map have been used. Also, effects of sympathetic and parasympathetic nervous system and an internal input to the SA node and their effects in HRV signals were evaluated. In the proposed method, output amount of integrator in IPFM model was compared with chaotic threshold level. Then, final output of IPFM model was characterized as the HR and HRV signal. So, from HR and HRV signals obtaining from this model, linear features such as Mean, Median, Variance, Standard Deviation, Maximum Range, Minimum Range, Mode, Amplitude Range and frequency spectrum, and non-linear features such as Lyapunov Exponent, Shanon Entropy, log Entropy, Threshold Entropy, sure Entropy and mode Entropy were extracted from artificial HRV and compared them with characteristics as extracted from natural HRV signal. Also, in this paper two patients that called high sympathetic Balance and Cardiovascular Autonomy Neuropathy (CAN) which is detected and evaluated by HRV signals were simulated. These signals by changing the values of the some coefficients of the normal simulated signal and with extracted frequency feature from these signals were simulated. For final generation of these abnormal signals, frequency features such as energy of low frequency band (EL), energy of high frequency band (HL), ratio of energy in low frequency band to the energy in high frequency band (EL/EH), ratio of energy in low frequency band to the energy in all frequency band (EL/ET) and ratio of energy in high frequency band to the energy in all frequency band (EH/ET) from abnormal signals were extracted and compared with these extracted values from normal signals. The results were closely correlated with the real data which confirm the effectiveness of the proposed model. Various signals derived from the output of this model can be used for final analysis of the HRV signals, such as arrhythmia detection and classification of ECG and HRV signals. One of the applications of the proposed model is the easy evaluation of diagnostic ECG signal processing devices. Such a model can also be used in signal compression and telemedicine application.
文摘According to the issues that the predict errors of chaotic sequences rapidly accumulated in multi-step forecasting which affects the predict accuracy, we proposed a new predict algorithm based on local modeling with variable frame length and interpolation points. The core idea is that, using interpolation method to increase the available sample data, then modeling the chaos dynamics system with least square algorithm which based on the Bernstein polynomial to realize the forecasting. We use the local modeling method, looking for the optimum frame length and interpolation points in every frame to improve the predict peformance. The experimental results show that the proposed algorithm can improve the predictive ability effectively, decreasing the accumulation of iterative errors in multi-step prediction.
基金Project supported by the National Natural Science Foundation of China(Nos.70271071,19990510,D0200201)
文摘The paper not only studies the noise reduction methods of chaotic time series with noise and its reconstruction techniques, but also discusses prediction techniques of chaotic time series and its applications based on chaotic data noise reduction. In the paper, we first decompose the phase space of chaotic time series to range space and null noise space. Secondly we restructure original chaotic time series in range space. Lastly on the basis of the above, we establish order of the nonlinear model and make use of the nonlinear model to predict some research. The result indicates that the nonlinear model has very strong ability of approximation function, and Chaos predict method has certain tutorial significance to the practical problems.