期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
L(2,1)-labeling problem on distance graphs 被引量:1
1
作者 陶昉昀 顾国华 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期122-125,共4页
L (2, 1)-labeling number, λ(G( Z , D)) , of distance graph G( Z , D) is studied. For general finite distance set D , it is shown that 2D+2≤λ(G( Z , D))≤D 2+3D. Furthermore, λ(G( Z , D)) ≤8 when... L (2, 1)-labeling number, λ(G( Z , D)) , of distance graph G( Z , D) is studied. For general finite distance set D , it is shown that 2D+2≤λ(G( Z , D))≤D 2+3D. Furthermore, λ(G( Z , D)) ≤8 when D consists of two prime positive odd integers is proved. Finally, a new concept to study the upper bounds of λ(G) for some special D is introduced. For these sets, the upper bound is improved to 7. 展开更多
关键词 L(2 1)-labeling distance graph channel assignment problem
在线阅读 下载PDF
On L(2,1)-labellings of distance graphs
2
作者 陶昉昀 顾国华 许克祥 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期244-248,共5页
The L(2,1)-labelling number of distance graphs G(D), denoted by λ(D), isstudied. It is shown that distance graphs satisfy λ(G) ≤Δ~2. Moreover, we prove λ({1,2, ..., k})=2k +2 and λ({1,3,..., 2k -1}) =2k + 2 for ... The L(2,1)-labelling number of distance graphs G(D), denoted by λ(D), isstudied. It is shown that distance graphs satisfy λ(G) ≤Δ~2. Moreover, we prove λ({1,2, ..., k})=2k +2 and λ({1,3,..., 2k -1}) =2k + 2 for any fixed positive integer k. Suppose k, a ∈ N and k,a≥2. If k≥a, then λ({a, a + 1,..., a + k - 1}) = 2(a + k-1). Otherwise, λ({a, a + 1, ..., a + k- 1}) ≤min{2(a + k-1), 6k -2}. When D consists of two positive integers,6≤λ(D)≤8. For thespecial distance sets D = {k, k + 1}(any k ∈N), the upper bound of λ(D) is improved to 7. 展开更多
关键词 channel assignment problem L(2 1)-labelling distance graphs
在线阅读 下载PDF
The L(3,2,1)-labeling on Bipartite Graphs
3
作者 YUAN WAN-LIAN ZHAI MING-QING Lǔ CHANG-HONG 《Communications in Mathematical Research》 CSCD 2009年第1期79-87,共9页
An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u... An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u)-f(v)|≥1 if dG(u,v) = 3. The L(3, 2,1)-labeling problem is to find the smallest number λ3(G) such that there exists an L(3, 2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T) attains the minimum value. 展开更多
关键词 channel assignment problems L(2 1)-labeling L(3 2 1)-labeling bi-partite graph TREE
在线阅读 下载PDF
A General Approach to L(h,k)-Label Interconnection Networks
4
作者 Tiziana Calamoneri Saverio Caminiti Rossella Petreschi 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第4期652-659,共8页
Given two non-negative integers h and k, an L(h, k)-labeling of a graph G = (V, E) is a function from the set V to a set of colors, such that adjacent nodes take colors at distance at least h, and nodes at distanc... Given two non-negative integers h and k, an L(h, k)-labeling of a graph G = (V, E) is a function from the set V to a set of colors, such that adjacent nodes take colors at distance at least h, and nodes at distance 2 take colors at distance at least k. The aim of the L(h, k)-labeling problem is to minimize the greatest used color. Since the decisional version of this problem is NP-complete, it is important to investigate particular classes of graphs for which the problem can be efficiently solved. It is well known that the most common interconnection topologies, such as Butterfly-like, Beneg, CCC, Trivalent Cayley networks, are all characterized by a similar structure: they have nodes organized as a matrix and connections are divided into layers. So we naturally introduce a new class of graphs, called (l × n)-multistage graphs, containing the most common interconnection topologies, on which we study the L(h, k)-labeling. A general algorithm for L(h, k)-labeling these graphs is presented, and from this method an efficient L(2, 1)-labeling for Butterfly and CCC networks is derived. Finally we describe a possible generalization of our approach. 展开更多
关键词 multistage interconnection network L(h k)-labeling channel assignment problem
原文传递
Conflict-free Incidence Coloring of Outer-1-planar Graphs
5
作者 Meng-ke QI Xin ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第4期929-942,共14页
An incidence of a graph G is a vertex-edge pair(v,e)such that v is incidence with e.A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences(u,e)and(v,f)get disti... An incidence of a graph G is a vertex-edge pair(v,e)such that v is incidence with e.A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences(u,e)and(v,f)get distinct colors if and only if they conflict each other,i.e.,(i)u=v,(ii)uv is e or f,or(iii)there is a vertex w such that uw=e and vw=f.The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number.A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once.In this paper,we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree△is either 2△or 2△+1 unless the graph is a cycle on three vertices,and moreover,all outer-1-planar graphs with conflict-free incidence chromatic number 2△or 2△+1 are completely characterized.An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given. 展开更多
关键词 outer-1-planar graph incidence coloring combinatorial algorithm channel assignment problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部