期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimization of circulating cooling water systems based on chance constrained programming 被引量:5
1
作者 Bo Liu Yufei Wang Xiao Feng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期167-178,共12页
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u... Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%). 展开更多
关键词 Circulating cooling water system UNCERTAINTY chance constrained programming DESIGN OPTIMIZATION SIMULATION
在线阅读 下载PDF
Risk adjustable optimal operation for electricity-hydrogen integrated energy system based on chance constrained goal programming
2
作者 ZHOU Xiao-jun HU Jia-ming +1 位作者 LI Chao-jie YANG Chun-hua 《Journal of Central South University》 2025年第6期2224-2238,共15页
The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu... The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality. 展开更多
关键词 electricity-hydrogen integrated energy system chance constrained goal programming risk adjustment state transition algorithm
在线阅读 下载PDF
Process optimization with consideration of uncertainties——An overview 被引量:6
3
作者 Ying Chen Zhihong Yuan Bingzhen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1700-1706,共7页
Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter varia... Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter variations, the deterministic model which neglects the parametric uncertainties is not suitable for practical applications. This paper provides an overview of the key contributions and recent advances in the field of process optimization under uncertainty over the past ten years and discusses their advantages and limitations thoroughly. The discussion is focused on three specific research areas, namely robust optimization, stochastic programming and chance constrained programming, based on which a systematic analysis of their applications, developments and future directions are presented. It shows that the more recent trend has been to integrate different optimization methods to leverage their respective superiority and compensate for their drawbacks. Moreover, data-driven optimization, which combines mathematical programming methods and machine learning algorithms, has become an emerging and competitive tool to handle optimization problems in the presence of uncertainty based on massive historical data. 展开更多
关键词 Optimization under uncertainty Robust optimization Stochastic programming chance constrained programming Data-driven optimization
在线阅读 下载PDF
Interval Demand Response Potential Evaluation and Risk Dispatch to Incorporate Public Buildings into Power System Operation
4
作者 Yu Yao Chengjin Ye +1 位作者 Yuming Zhao Yi Ding 《Journal of Modern Power Systems and Clean Energy》 2025年第4期1347-1359,共13页
Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete informatio... Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete information,varying thermal parameters,and stochastic user behaviors,which hin ders incorporating the public buildings into power system oper ation.To address the problem,this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation.Firstly,the DR evaluation is developed based on the equivalent thermal parameter(ETP)model,actual outdoor tem perature data,and air conditioning(AC)consumption data.To quantify the uncertainties of public buildings,the interval evalu ation is given employing the linear regression method consider ing the confidence bound.Utilizing the evaluation results,the risk dispatch model is proposed to allocate public building re serve based on the chance constrained programming(CCP).Fi nally,the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming(MISOCP)for its solution.The proposed evaluation method and the risk dis patch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China. 展开更多
关键词 Public building demand response demand response potential evaluation risk dispatch chance constrained programming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部