Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter varia...Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter variations, the deterministic model which neglects the parametric uncertainties is not suitable for practical applications. This paper provides an overview of the key contributions and recent advances in the field of process optimization under uncertainty over the past ten years and discusses their advantages and limitations thoroughly. The discussion is focused on three specific research areas, namely robust optimization, stochastic programming and chance constrained programming, based on which a systematic analysis of their applications, developments and future directions are presented. It shows that the more recent trend has been to integrate different optimization methods to leverage their respective superiority and compensate for their drawbacks. Moreover, data-driven optimization, which combines mathematical programming methods and machine learning algorithms, has become an emerging and competitive tool to handle optimization problems in the presence of uncertainty based on massive historical data.展开更多
Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete informatio...Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete information,varying thermal parameters,and stochastic user behaviors,which hin ders incorporating the public buildings into power system oper ation.To address the problem,this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation.Firstly,the DR evaluation is developed based on the equivalent thermal parameter(ETP)model,actual outdoor tem perature data,and air conditioning(AC)consumption data.To quantify the uncertainties of public buildings,the interval evalu ation is given employing the linear regression method consider ing the confidence bound.Utilizing the evaluation results,the risk dispatch model is proposed to allocate public building re serve based on the chance constrained programming(CCP).Fi nally,the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming(MISOCP)for its solution.The proposed evaluation method and the risk dis patch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.展开更多
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.
文摘Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter variations, the deterministic model which neglects the parametric uncertainties is not suitable for practical applications. This paper provides an overview of the key contributions and recent advances in the field of process optimization under uncertainty over the past ten years and discusses their advantages and limitations thoroughly. The discussion is focused on three specific research areas, namely robust optimization, stochastic programming and chance constrained programming, based on which a systematic analysis of their applications, developments and future directions are presented. It shows that the more recent trend has been to integrate different optimization methods to leverage their respective superiority and compensate for their drawbacks. Moreover, data-driven optimization, which combines mathematical programming methods and machine learning algorithms, has become an emerging and competitive tool to handle optimization problems in the presence of uncertainty based on massive historical data.
基金supported by the National Science Fund for Distinguished Young Scholars(No.52125702)the Key Science and Technology Project of China Southern Power Grid Corporation(No.090000KK52220020).
文摘Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete information,varying thermal parameters,and stochastic user behaviors,which hin ders incorporating the public buildings into power system oper ation.To address the problem,this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation.Firstly,the DR evaluation is developed based on the equivalent thermal parameter(ETP)model,actual outdoor tem perature data,and air conditioning(AC)consumption data.To quantify the uncertainties of public buildings,the interval evalu ation is given employing the linear regression method consider ing the confidence bound.Utilizing the evaluation results,the risk dispatch model is proposed to allocate public building re serve based on the chance constrained programming(CCP).Fi nally,the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming(MISOCP)for its solution.The proposed evaluation method and the risk dis patch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.