Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was compos...Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.展开更多
Water vapour and carbon dioxide as the main products in combustion chamber have strong non-gray radiation properties. Multidimensional mathematical models were developed by zone method considering the non-gray radiati...Water vapour and carbon dioxide as the main products in combustion chamber have strong non-gray radiation properties. Multidimensional mathematical models were developed by zone method considering the non-gray radiation properties of gas in combustion chamber. Edwards exponential wide band model (EBWM) was adopted to calculate the non-gray radiation properties of gas, and the three-point Gauss-Legendre integral formula was used to calculate direct radiation exchange areas. Reflected radiation heat fluxes were obtained by Gauss elimination method, and energy balance equations were solved by main variable correction method. An example was given to validate the developed models, and further investigation of effects of flame distribution on heat transfer was carried on.展开更多
Measuring ammonia(NH_(3))volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH_(3)volatilization m...Measuring ammonia(NH_(3))volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH_(3)volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH_(3)volatilization in urea-amended field plots and ii)to define the critical period of NH_(3)-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m^(2))generates a value of NH_(3)-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH_(3)volatilization.This strategy enhances the power of detection of NH_(3)-N loss abatement in field experiments using chambers.展开更多
Field studies on soil ammonia(NH_(3))volatilization are restricted in many countries owing to the high costs commonly demanded for accurate quantification.We assessed the accuracy of a simple,open chamber design to ca...Field studies on soil ammonia(NH_(3))volatilization are restricted in many countries owing to the high costs commonly demanded for accurate quantification.We assessed the accuracy of a simple,open chamber design to capture NH_(3)under field conditions,as affected by different chamber placement schemes.Urea-15 N was surface applied to lysimeters installed in the spaces between maize rows.Open chambers made from plastic bottles were installed on each lysimeter with variations in i)N rates(3,8,13,and 18 g m^(-2)),ii)the height of the chamber above the soil surface(0,5,and 10 mm),and iii)chamber relocation(static vs.dynamic).Reference lysimeters without chambers were used to measure NH_(3)losses by^(15)N-balance.Losses of NH_(3)-N accounted for more than 50%of the applied N.Relocation of the chambers had no impact on their NH_(3)-trapping efficiencies,proving to be an unnecessary procedure.Variation in the height of the chambers above the soil surface affected the capture of NH_(3),but the results still maintained high linearity with the NH_(3)losses quantified by the reference method(R^(2)>0.98).When the same placement scheme used in the introductory study describing the chamber was utilized(static and touching the soil surface),we found a trapping efficiency of 60%,which was very similar to that(57%)obtained in the previous study.Our results show that this simple,open chamber design can be used with satisfactory accuracy under field conditions,provided that simple,standardized procedures are warranted.展开更多
Current output dose measurement in CT is based on (CTDI). The conventional methodology of CT dosimetric performance characterization is not appropriate to modern CT scanners with helical scanning modes, dose modulatio...Current output dose measurement in CT is based on (CTDI). The conventional methodology of CT dosimetric performance characterization is not appropriate to modern CT scanners with helical scanning modes, dose modulation, array detectors and multiple slice planes or cone-beam irradiation geometries. AAPM TG 111 report recognizes the shortfall of the CTDI methods and recommends a new technique that more accurately characterizes the dose profile from modern CT scanners, which utilizes a short conventional ion chamber rather than a pencil chamber. We developed and characterize a in-house phantom design using a three separate anatomical regions of clinical scan sequences (Head, chest and abdomen), and determined the equilibrium dose in our dose equilibrium phantom, measured if the attenuation of the beam is the equal to that of CTDI Perspex phantom and compare CTDI dose estimations using a standard pencil chamber to the dose equilibrium phantom measurements. This methodology allows measurements of the accumulated dose for any clinical scan length and allowing measurement of the equilibrium dose. Using the new methodology, we determined that the CTDI approach can underestimate the dose by 25% to 35% and all of our dose values from the water phantom and farmer chamber were independently verified with TLD measurements.展开更多
Since 2009,the Mine Safety and Health Administration(MSHA)has required mines to install refuge alternatives(RAs)in underground coal mines.One of the biggest concerns with occupied RAs is the possible severity of the r...Since 2009,the Mine Safety and Health Administration(MSHA)has required mines to install refuge alternatives(RAs)in underground coal mines.One of the biggest concerns with occupied RAs is the possible severity of the resulting thermal environment.In 30 CFR 7.504,the maximum allowable apparent temperature(AT)for an occupied RA is specified as 35℃(95°F).Manufacturers must conduct heat/humidity tests to demonstrate that their RAs meet the 35℃(95°F)AT limit.For these tests,heat input devices are used to input the metabolic heat of actual miners.A wide variety of test methods,sensors,and heat input devices could be used when conducting such tests.Since 2012,the National Institute for Occupational Safety and Health(NIOSH)has conducted over thirty 96-hour heat/humidity tests on four different RAs.This paper discusses the test equipment and procedures used during these investigations.This information is useful for RA manufacturers conducting RA heat/humidity tests,for other researchers investigating RA heat/humidity buildup,and for those who need to assess the thermal environment of any confined space where people may be trapped or are seeking refuge.展开更多
文摘Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.
基金Item Sponsored by National Basic Research Program of China (2006CB601203)
文摘Water vapour and carbon dioxide as the main products in combustion chamber have strong non-gray radiation properties. Multidimensional mathematical models were developed by zone method considering the non-gray radiation properties of gas in combustion chamber. Edwards exponential wide band model (EBWM) was adopted to calculate the non-gray radiation properties of gas, and the three-point Gauss-Legendre integral formula was used to calculate direct radiation exchange areas. Reflected radiation heat fluxes were obtained by Gauss elimination method, and energy balance equations were solved by main variable correction method. An example was given to validate the developed models, and further investigation of effects of flame distribution on heat transfer was carried on.
基金Project supported by China Postdoctoral Science Foundation (20100481488), Key Fund Project of Advanced Research of the Weapon Equipment (9140A33040512JB3401).
基金supported by the International Atomic Energy Agency(IAEA),Vienna,Austria through a Coordinated Research Project(No.D15016)the“Carlos Chagas Filho”Foundation for Support of Research in the State of Rio de Janeiro(FAPERJ)of Brazil with grants awarded to BJRA,CPJ,RMB,and SU and postdoctoral scholarships to MRM and SS。
文摘Measuring ammonia(NH_(3))volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH_(3)volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH_(3)volatilization in urea-amended field plots and ii)to define the critical period of NH_(3)-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m^(2))generates a value of NH_(3)-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH_(3)volatilization.This strategy enhances the power of detection of NH_(3)-N loss abatement in field experiments using chambers.
基金supported by the International Atomic Energy Agency(IAEA),Vienna,Austria through a Coordinated Research Project(No.D15016)the“Carlos Chagas Filho”Foundation for Support of Research in the State of Rio de Janeiro(FAPERJ)of Brazil with grants awarded to BJRA,CPJ,RMB,and SU and postdoctoral scholarships to MRM,RFG and SACSthe Brazilian National Council for Scientific and Technological Development(CNPq)with a Productivity Grant(PQ)awarded to BJRA,CPJ,RMB,and SU and scholarships to LFS and CAS。
文摘Field studies on soil ammonia(NH_(3))volatilization are restricted in many countries owing to the high costs commonly demanded for accurate quantification.We assessed the accuracy of a simple,open chamber design to capture NH_(3)under field conditions,as affected by different chamber placement schemes.Urea-15 N was surface applied to lysimeters installed in the spaces between maize rows.Open chambers made from plastic bottles were installed on each lysimeter with variations in i)N rates(3,8,13,and 18 g m^(-2)),ii)the height of the chamber above the soil surface(0,5,and 10 mm),and iii)chamber relocation(static vs.dynamic).Reference lysimeters without chambers were used to measure NH_(3)losses by^(15)N-balance.Losses of NH_(3)-N accounted for more than 50%of the applied N.Relocation of the chambers had no impact on their NH_(3)-trapping efficiencies,proving to be an unnecessary procedure.Variation in the height of the chambers above the soil surface affected the capture of NH_(3),but the results still maintained high linearity with the NH_(3)losses quantified by the reference method(R^(2)>0.98).When the same placement scheme used in the introductory study describing the chamber was utilized(static and touching the soil surface),we found a trapping efficiency of 60%,which was very similar to that(57%)obtained in the previous study.Our results show that this simple,open chamber design can be used with satisfactory accuracy under field conditions,provided that simple,standardized procedures are warranted.
文摘Current output dose measurement in CT is based on (CTDI). The conventional methodology of CT dosimetric performance characterization is not appropriate to modern CT scanners with helical scanning modes, dose modulation, array detectors and multiple slice planes or cone-beam irradiation geometries. AAPM TG 111 report recognizes the shortfall of the CTDI methods and recommends a new technique that more accurately characterizes the dose profile from modern CT scanners, which utilizes a short conventional ion chamber rather than a pencil chamber. We developed and characterize a in-house phantom design using a three separate anatomical regions of clinical scan sequences (Head, chest and abdomen), and determined the equilibrium dose in our dose equilibrium phantom, measured if the attenuation of the beam is the equal to that of CTDI Perspex phantom and compare CTDI dose estimations using a standard pencil chamber to the dose equilibrium phantom measurements. This methodology allows measurements of the accumulated dose for any clinical scan length and allowing measurement of the equilibrium dose. Using the new methodology, we determined that the CTDI approach can underestimate the dose by 25% to 35% and all of our dose values from the water phantom and farmer chamber were independently verified with TLD measurements.
文摘Since 2009,the Mine Safety and Health Administration(MSHA)has required mines to install refuge alternatives(RAs)in underground coal mines.One of the biggest concerns with occupied RAs is the possible severity of the resulting thermal environment.In 30 CFR 7.504,the maximum allowable apparent temperature(AT)for an occupied RA is specified as 35℃(95°F).Manufacturers must conduct heat/humidity tests to demonstrate that their RAs meet the 35℃(95°F)AT limit.For these tests,heat input devices are used to input the metabolic heat of actual miners.A wide variety of test methods,sensors,and heat input devices could be used when conducting such tests.Since 2012,the National Institute for Occupational Safety and Health(NIOSH)has conducted over thirty 96-hour heat/humidity tests on four different RAs.This paper discusses the test equipment and procedures used during these investigations.This information is useful for RA manufacturers conducting RA heat/humidity tests,for other researchers investigating RA heat/humidity buildup,and for those who need to assess the thermal environment of any confined space where people may be trapped or are seeking refuge.