Leveraging unique resource advantages of traditional Chinese medicine(TCM)to achieve innovative breakthroughs in research constitutes a core strategic imperative for its inheritance,innovation and development.At prese...Leveraging unique resource advantages of traditional Chinese medicine(TCM)to achieve innovative breakthroughs in research constitutes a core strategic imperative for its inheritance,innovation and development.At present,the academic advances and scientific achievements in TCM serve as a key driving force for industry growth and advancement of the inheritance and innovation of TCM.To continuously strengthen the leading role of academic research,the China Association of Chinese Medicine(CACM)attaches great importance to the latest research directions and academic results in TCM,and spotlights key advances and emerging trends in TCM scholarship.Since 2020,CACM has conducted the selection and release of the“top 10 academic advances in traditional Chinese medicine”on a yearly basis.The selection of“top 10 academic advances in traditional Chinese medicine in 2024”prioritized research that addresses clinical needs,answers scientific questions and drives industrial development.Highlighting exploratory,forward-looking,innovative and groundbreaking achievements,the following 10 breakthroughs were selected through a process of collection,systematic review and expert evaluation:New advances in prevention and treatment of digestive system diseases with“brain-gut”cross-organ strategy,high-level evidence support for prevention and treatment of cardiovascular disease(CVD)continuum with TCM,important breakthrough in the research on prevention and treatment of acute radiation injury with TCM,elucidation of molecular mechanisms underlying“excellent shape and high quality”variation in cultivated American ginseng through domestication,biosynthesis of trace active ingredients such as benzylisoquinoline alkaloids,pilot application of artificial intelligence(AI)technology,research technology for unelucidated constituents of TCM,new drug delivery system in TCM,and establishment and preliminary application of integrated evidence chain-based effectiveness evaluation of TCM(iEC-Eff).展开更多
Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the overall performance of corresponding scheduling algorithm. However, backtracking is used in general comb...Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the overall performance of corresponding scheduling algorithm. However, backtracking is used in general combination algorithms to traverse the whole search space which may introduce redundant operations, so performance of the combination algorithm is generally poor. A fast scheduling chain combination algorithm which avoids redundant operations by skipping “incompatible” steps of scheduling chains and using a stack to remember the scheduling state is presented in this paper to overcome the problem. Experimental results showed that it can improve the performance of scheduling algorithms by up to 15 times. By further omitting unnecessary operations, a fast algorithm of minimum combination length prediction is developed, which can improve the speed by up to 10 times.展开更多
基金supported by the Project of Map of Scientific and Technological Talents in the Field of Traditional Chinese Medicine(No.XMSB20240923106).
文摘Leveraging unique resource advantages of traditional Chinese medicine(TCM)to achieve innovative breakthroughs in research constitutes a core strategic imperative for its inheritance,innovation and development.At present,the academic advances and scientific achievements in TCM serve as a key driving force for industry growth and advancement of the inheritance and innovation of TCM.To continuously strengthen the leading role of academic research,the China Association of Chinese Medicine(CACM)attaches great importance to the latest research directions and academic results in TCM,and spotlights key advances and emerging trends in TCM scholarship.Since 2020,CACM has conducted the selection and release of the“top 10 academic advances in traditional Chinese medicine”on a yearly basis.The selection of“top 10 academic advances in traditional Chinese medicine in 2024”prioritized research that addresses clinical needs,answers scientific questions and drives industrial development.Highlighting exploratory,forward-looking,innovative and groundbreaking achievements,the following 10 breakthroughs were selected through a process of collection,systematic review and expert evaluation:New advances in prevention and treatment of digestive system diseases with“brain-gut”cross-organ strategy,high-level evidence support for prevention and treatment of cardiovascular disease(CVD)continuum with TCM,important breakthrough in the research on prevention and treatment of acute radiation injury with TCM,elucidation of molecular mechanisms underlying“excellent shape and high quality”variation in cultivated American ginseng through domestication,biosynthesis of trace active ingredients such as benzylisoquinoline alkaloids,pilot application of artificial intelligence(AI)technology,research technology for unelucidated constituents of TCM,new drug delivery system in TCM,and establishment and preliminary application of integrated evidence chain-based effectiveness evaluation of TCM(iEC-Eff).
基金Project (No. Y105355) supported by the Natural Science Foundationof Zhejiang Province, China
文摘Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the overall performance of corresponding scheduling algorithm. However, backtracking is used in general combination algorithms to traverse the whole search space which may introduce redundant operations, so performance of the combination algorithm is generally poor. A fast scheduling chain combination algorithm which avoids redundant operations by skipping “incompatible” steps of scheduling chains and using a stack to remember the scheduling state is presented in this paper to overcome the problem. Experimental results showed that it can improve the performance of scheduling algorithms by up to 15 times. By further omitting unnecessary operations, a fast algorithm of minimum combination length prediction is developed, which can improve the speed by up to 10 times.