As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy ...As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency.展开更多
Objective To quantitatively analyze the policy of centralized drug procurement centralized drug procurement in order to provide reference for the subsequent policy formulation and improvement.Methods Text mining metho...Objective To quantitatively analyze the policy of centralized drug procurement centralized drug procurement in order to provide reference for the subsequent policy formulation and improvement.Methods Text mining method was used to process 15 centralized drugs procurement policies issued at the national level during 2015-2022,and a PMC index evaluation model of centralized drug procurement policies was established.Then,15 centralized drug procurement policies were quantitatively analyzed from the overall and comparative perspective through an evaluation model.Results and Conclusion The average PMC index of 15 centralized drug procurement policies was 6.95,which was acceptable on the whole.Among them,eight were excellent and seven were acceptable.As to the first-order variables,the centralized drugs procurement policy still lacks incentives and constraints.The comparative results show that there are differences in the content and structure of policies,but they are strongly related to each other.Chinese centralized drug procurement policy has been basically formed,which is closely related to medical insurance and medical policies.However,it is still necessary to pay attention to the structure of the policy to ensure the elaboration of the policy content.展开更多
The centralized procurement of drugs in the medical system is a key link,which not only affects the economic effect of institutions,but also relates to the medical quality and patient safety.In the current era,central...The centralized procurement of drugs in the medical system is a key link,which not only affects the economic effect of institutions,but also relates to the medical quality and patient safety.In the current era,centralized drug procurement in hospitals can meet the needs of most patients;however,the specific steps of the work still need to be optimized.Starting from the level of hospital drug centralized procurement work,this paper discusses the policy background,analyzes the practice of drug centralized procurement in tertiary hospitals,and provides specific work management suggestions,aiming to improve work efficiency and serve as a reference for optimizing subsequent hospital drug centralized procurement work.展开更多
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve...As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.展开更多
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met...Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.展开更多
Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central ne...Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation...How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.展开更多
This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and ...This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.展开更多
Drug delivery systems(DDS)have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery.However,the access of nanoparticles/drugs to the central nervous system(CNS)re...Drug delivery systems(DDS)have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery.However,the access of nanoparticles/drugs to the central nervous system(CNS)remains a challenge mainly due to the obstruction from brain barriers.Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery.Herein,we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood–brain barrier.We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS,as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases.Finally,we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.展开更多
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous syst...The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.展开更多
BACKGROUND Long-term chemotherapy for patients with gastric cancer(GC),facilitated by peripherally inserted central catheter(PICC)catheterization,reduces vascular damage and enhances drug delivery efficiency but carri...BACKGROUND Long-term chemotherapy for patients with gastric cancer(GC),facilitated by peripherally inserted central catheter(PICC)catheterization,reduces vascular damage and enhances drug delivery efficiency but carries risks of catheter-related complications.A combination of group psychological nursing and physical mo-vement care significantly mitigates the risk of venous thrombosis and improves psychological well-being,and enhances motor function,underscoring its clinical importance.AIM To assess group psychological and physical movement nursing in preventing venous thrombosis in patients with PICC GC.METHODS Sixty-five GC patients with PICC,admitted from January 2022 to January 2023,were randomly divided into two groups using the lottery method:A control group(n=35,routine nursing)and an observation group(n=30,routine nursing plus psychological nursing and physical movement nursing).Both groups re-ceived continuous care for 2 weeks.Pre-nursing and post-nursing data on psycho-logical state,physical function,chemotherapy-related thrombosis incidence,and cancer-related fatigue were analyzed using SPSS 26.0 and GraphPad Prism 8.0.RESULTS After nursing,both groups showed reduced Hamilton Anxiety Scale scores and increased General Perceived Self-Efficacy Scale scores,with the observation group performing better(P<0.05).The Functional Comprehensive Assessment score for the observation group after nursing was(65.42±2.35)points,lower than the control group’s(62.19±4.33)points(P<0.05).Although no significant difference was observed in the incidence of venous thrombosis between the two groups(χ2=0.815,P=0.367),the observation group had lower incidence.Both groups showed decreased Revised Piper Fatigue Scale scores,with the observation group scoring lower(P<0.05).CONCLUSION Group psychological and physical movement nursing for patients with PICC reduces venous thrombosis risk,improves psychological well-being,cancer-related fatigue,and physical function,making it highly promotable.展开更多
文摘As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency.
文摘Objective To quantitatively analyze the policy of centralized drug procurement centralized drug procurement in order to provide reference for the subsequent policy formulation and improvement.Methods Text mining method was used to process 15 centralized drugs procurement policies issued at the national level during 2015-2022,and a PMC index evaluation model of centralized drug procurement policies was established.Then,15 centralized drug procurement policies were quantitatively analyzed from the overall and comparative perspective through an evaluation model.Results and Conclusion The average PMC index of 15 centralized drug procurement policies was 6.95,which was acceptable on the whole.Among them,eight were excellent and seven were acceptable.As to the first-order variables,the centralized drugs procurement policy still lacks incentives and constraints.The comparative results show that there are differences in the content and structure of policies,but they are strongly related to each other.Chinese centralized drug procurement policy has been basically formed,which is closely related to medical insurance and medical policies.However,it is still necessary to pay attention to the structure of the policy to ensure the elaboration of the policy content.
文摘The centralized procurement of drugs in the medical system is a key link,which not only affects the economic effect of institutions,but also relates to the medical quality and patient safety.In the current era,centralized drug procurement in hospitals can meet the needs of most patients;however,the specific steps of the work still need to be optimized.Starting from the level of hospital drug centralized procurement work,this paper discusses the policy background,analyzes the practice of drug centralized procurement in tertiary hospitals,and provides specific work management suggestions,aiming to improve work efficiency and serve as a reference for optimizing subsequent hospital drug centralized procurement work.
基金supported by the Key Scientific and Technological Projects(2024KJGG27)of Tianfu Yongxing Laboratorythe Experimental Platform Open Innovation Funding(209042025003)of Sichuan Energy Internet Research Institute,Tsinghua University.
文摘As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.
基金supported by the National Natural Science Foundation of China, No.82274616the Key Laboratory Project for General Universities in Guangdong Province, No.2019KSYS005Guangdong Province Science and Technology Plan International Cooperation Project, No.2020A0505100052 (all to QW)。
文摘Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
文摘Copper is a transition metal and an essential element for the organism,as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs,including the central nervous system.Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B,Menkes disease and Wilson’s disease,respectively,and also in multifactorial neurological disorders such as Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and multiple sclerosis.This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology,reports about unbalances in copper levels and/or distribution under disease,describes relevant animal models for human disorders where copper metabolism genes are dysregulated,and discusses relevant therapeutic approaches modulating copper availability.Overall,alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174041)China Postdoctoral Science Foundation (CPSF)(Grant No. 2022M723118)the seed grants from the Wenzhou Institute,University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.
基金This study was supported by the National Natural Science Foundation of China(No.62001506).
文摘This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.
基金supported by the National Natural Science Foundation of China(82204634,82174047,81622051)the Zhejiang Provincial Natural Science Foundation of China(LQ22H280010)the Foundation of Zhejiang Chinese Medical University(2021ZR03).
文摘Drug delivery systems(DDS)have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery.However,the access of nanoparticles/drugs to the central nervous system(CNS)remains a challenge mainly due to the obstruction from brain barriers.Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery.Herein,we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood–brain barrier.We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS,as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases.Finally,we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.
文摘The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.
文摘BACKGROUND Long-term chemotherapy for patients with gastric cancer(GC),facilitated by peripherally inserted central catheter(PICC)catheterization,reduces vascular damage and enhances drug delivery efficiency but carries risks of catheter-related complications.A combination of group psychological nursing and physical mo-vement care significantly mitigates the risk of venous thrombosis and improves psychological well-being,and enhances motor function,underscoring its clinical importance.AIM To assess group psychological and physical movement nursing in preventing venous thrombosis in patients with PICC GC.METHODS Sixty-five GC patients with PICC,admitted from January 2022 to January 2023,were randomly divided into two groups using the lottery method:A control group(n=35,routine nursing)and an observation group(n=30,routine nursing plus psychological nursing and physical movement nursing).Both groups re-ceived continuous care for 2 weeks.Pre-nursing and post-nursing data on psycho-logical state,physical function,chemotherapy-related thrombosis incidence,and cancer-related fatigue were analyzed using SPSS 26.0 and GraphPad Prism 8.0.RESULTS After nursing,both groups showed reduced Hamilton Anxiety Scale scores and increased General Perceived Self-Efficacy Scale scores,with the observation group performing better(P<0.05).The Functional Comprehensive Assessment score for the observation group after nursing was(65.42±2.35)points,lower than the control group’s(62.19±4.33)points(P<0.05).Although no significant difference was observed in the incidence of venous thrombosis between the two groups(χ2=0.815,P=0.367),the observation group had lower incidence.Both groups showed decreased Revised Piper Fatigue Scale scores,with the observation group scoring lower(P<0.05).CONCLUSION Group psychological and physical movement nursing for patients with PICC reduces venous thrombosis risk,improves psychological well-being,cancer-related fatigue,and physical function,making it highly promotable.