期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of strain rate and water-to-cement ratio on compressive mechanical behavior of cement mortar 被引量:6
1
作者 周继凯 葛利梅 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1087-1095,共9页
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni... Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate. 展开更多
关键词 cement mortar loading rate compressive strength critical strain stress-strain behavior
在线阅读 下载PDF
Microscopic Pore and Filling Performance of Coal Gangue Cementitious Paste 被引量:3
2
作者 王忠昶 WANG Zechuan ZHAO Wenting 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期427-430,共4页
To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine g... To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine gangue rate were studied on the basis of keeping the amount of cementing material and slurry concentration unchanged. The porosity and the distribution of pore diameter of the filling specimen for curing 28 d were tested by a mercury injection instrument under different fine gangue rate conditions. It was shown that the slump, divergence, setting time and compressive strength of the paste firstly increased and then decreased with increasing fine gangue rate. The stratification and bleeding rate decreased with increasing fine gangue rate. The smaller the critical pore size of the paste was, the smaller the porosity was, the smaller the average pore size was. When the fine gangue rate was 40%, the maximum critical pore diameter of the paste was 55.79 μm, and the corresponding porosity was 17.54%, and the properties of filling paste were the best. When the fine gangue rate further increased, the aggregate surface area increased, and the reaction product of cementitious materials could not effectively fill the pores. It weakened the agglomeration effect. The particles surface of coal gangue was fragmental and flake deposit with irregular shape and uneven fold morphology. It was easy to be bonded with the surface of other filling material. The hydration products of coal gangue cementitious material were a large number of C-S-H gel with fibrous shape and ettringite(AFt) with compact block structure. The theoretical reference was provided for the preparation of low cost gangue cemented filling materials in coal mines. 展开更多
关键词 cementing gangue fine gangue rate filling performance pore diameter porosity
原文传递
Microstructure and Growth Kinetics of Silicide Coatings for TiAl Alloy
3
作者 HUANG Lei WU Xiangqing +1 位作者 XIE Faqin WANG Su 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期245-249,共5页
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive s... In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)]. 展开更多
关键词 pack cementation coating titanium aluminide siliconizing kinetics activation energy rate controlling step
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部