Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects o...Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects offer new possibilities.Here,we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe_(2),focusing on these effects around the charge density wave transition(≈200 K).The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450μVK^(-1) at 184 K,surpassing the Seebeck coefficient.Furthermore,1T-TiSe_(2) exhibits a remarkably broad temperature range(170-400 K)with a Thomson coefficient exceeding 190μV K^(-1),a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges.Additionally,the Nernst coefficient exhibits an unusual temperature dependence,increasing with temperature in the normal phase,which we attribute to bipolar conduction effects.The combination of solid-solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.展开更多
目的:探讨CDw75(cluster of differentiation antigen 75)在大肠癌组织中的表达及其和大肠癌浸润、转移和TNM分期等病理特征之间的关系。方法:采用免疫组化SP法检测CDw75抗原在61例大肠癌组织和30例相应正常大肠黏膜组织中的表达,计算...目的:探讨CDw75(cluster of differentiation antigen 75)在大肠癌组织中的表达及其和大肠癌浸润、转移和TNM分期等病理特征之间的关系。方法:采用免疫组化SP法检测CDw75抗原在61例大肠癌组织和30例相应正常大肠黏膜组织中的表达,计算阳性细胞的百分率。结果:CDw75在30例正常大肠黏膜中均阴性表达,在61例大肠癌组织中有30例阳性表达。CDw75表达阳性多见于肿瘤直径≥5cm、浸润深度较深、伴淋巴结转移和远处转移及TNMⅢ+Ⅳ期的大肠癌。结论:大肠癌组织中CDw75抗原的表达可作为大肠黏膜恶性转化的一个标志物,并可能用于判断大肠癌的恶性生物学行为。展开更多
Worldwide construction and demolition waste (CDW) is currently dumped. To close the building cycle and the building materials cycle by recycling CDW in high technical applications, the technical quality of stony mater...Worldwide construction and demolition waste (CDW) is currently dumped. To close the building cycle and the building materials cycle by recycling CDW in high technical applications, the technical quality of stony materials must be improved. For this purpose, concrete rubbles and brick rubbles, the two major stony constituents of CDW, should be separated from each other. Based on the differences in density and content of Fe-2O-3 between the two materials, a wet method of jigging and a dry method of magnetic separation are effective,tested.展开更多
The operation of reinforced concrete structures is directly associated with the adhesion between the steel bar and the concrete,which allows the internal forces to be transferred to the reinforcement during the ...The operation of reinforced concrete structures is directly associated with the adhesion between the steel bar and the concrete,which allows the internal forces to be transferred to the reinforcement during the process of loading the structural elements.The modification of the concrete composition,with the introduction of recycled aggregate from construction and demolition waste(CDW),affects the steel-concrete interface and can modify the bonding stress,which is also influenced by the type and diameter of the bar used.In this work,the influence of the recycled fine aggregate(RFA)and types of steel bar on the steel-concrete bond was experimentally evaluated using the pullout test.Conventional concrete and recycled concrete,with RFA replacement level of 25%,were produced.Two types of steel rebars(i.e.,plain and deformed)with diameters of 10.0 and 16.0 mm were considered in this paper.The results indicate a reduction in the adhesion stress with the introduction of recycled aggregate,but this trend is influenced by the diameter of the bar used.The use of ribbed bars modifies the stress bon-slip behavior,with an increase in the average bond strength,which is also observed with the reduction of the diameter of the bar.展开更多
In the Temperature-Pressure phase diagram, the quasi-one-dimensional conductor, HMTSF-TCNQ, the ground state at ambient pressure is an insulator of charge density wave (CDW) below 30 K, while it shows a good metallic ...In the Temperature-Pressure phase diagram, the quasi-one-dimensional conductor, HMTSF-TCNQ, the ground state at ambient pressure is an insulator of charge density wave (CDW) below 30 K, while it shows a good metallic nature at higher temperature. The CDW insulating state is suppressed by a pressure of 1 GPa, which is considered to be a quantum critical point. Neither at 0 - 0.5 nor 2 GPa but only around this critical point in pressure, field-induced phases appear from 0.2 T through 10 T, where Rxy is almost constant and Rxx is very low. These phenomena are achieved when the magnetic field is applied along the least conducting axis. The behaviors are consistent with a kind of Quantum Hall Effect (QHE). The field-induce phase accompanied by the QHE might be the field-induced CDW (FICDW) similar to that of FISDW, observed in (TMTSF)2X salts. This paper presents the latest result of the Hall effects reviewing the history of the authors’ work on this material from preliminary to the latest ones.展开更多
We reference the tunneling Hamiltonian to have particle tunneling among different states represented as wave-functions. Our problem applies wave-functionals to a driven sine-Gordon system. We apply the tunneling Hamil...We reference the tunneling Hamiltonian to have particle tunneling among different states represented as wave-functions. Our problem applies wave-functionals to a driven sine-Gordon system. We apply the tunneling Hamiltonian to charge density wave (CDW) transport problems where we consider tunneling among states that are wave-functionals of a scalar quantum field, i.e. derived I-E curves that match Zenier curves used to fit data experimentally with wave-functionals congruent with the false vacuum hypothesis. The open question is whether the coefficients picked in both wave-functionals and the magnitude of the coefficients of the driven sine-Gordon physical system are picked by topological charge arguments that appear to assign values consistent with the false vacuum hypothesis. Crucial results by Fred Cooper et al. allow a mature quantum foam interpretation of false vacuum nucleation for further refinement of our wave-functional results. In doing so, we give credence to topological arguments as a first order phase transition in CDW I-E curves.展开更多
A charge density wave(CDW)ground state is observed in polycrystalline Cu_(2)Se below 125 K,which corresponds to an energy gap of 40.9 meV and an electron-phonon coupling constant of 0.6.Due to the polycrystalline stru...A charge density wave(CDW)ground state is observed in polycrystalline Cu_(2)Se below 125 K,which corresponds to an energy gap of 40.9 meV and an electron-phonon coupling constant of 0.6.Due to the polycrystalline structure,the Peierls transition process has been expanded to a wide temperature range from 90 K to 160 K.The Hall carrier concentration shows a continuous decrease from 2.1×10^(20)to 1.6×10^(20)cm^(-3)in the temperature range from 160 K to 90 K,while almost unchanged above 160 K and below 90 K.After entering the CDW ground state,a wave-like fluctuation was observed in theI-Vcurve near 50 K,which exhibits a periodic negative differential resistivity in an applied electric field due to the current.We also investigated the doping effect of Zn,Ni,and Te on the CDWground state.Both Zn and Ni doped Cu_(2)Se show a CDW character with increased energy gap and electron-phonon coupling constant,but no notable Peierls transition was observed in Te doped Cu_(2)Se.Similar wave-likeI-Vcurve was also seen in Cu_(1.98)Zn_(0.02)Se near 40 K.The regular fluctuation in the dcI-Vcurve was not magnetic field sensitive,but temperature and sample size sensitive.展开更多
As a crucial component of the Earth’s climate system,Antarctic sea ice has demonstrated significant variability over the satellite era.Here,we identify a remarkable decadal transition in the total Antarctic Sea Ice E...As a crucial component of the Earth’s climate system,Antarctic sea ice has demonstrated significant variability over the satellite era.Here,we identify a remarkable decadal transition in the total Antarctic Sea Ice Extent(SIE).The stage from 1979 to 2006 is characterized by high-frequency(i.e.,seasonal to interannual)temporal variability in SIE and zonal asymmetry in Sea Ice Concentration(SIC),which is primarily under the control of the Amundsen Sea Low(ASL).After 2007,however,sea ice changes exhibit a more spatially homogeneous pattern in SIC and a more temporally long-lasting mode in SIE.Further analysis reveals that sea ice-ocean interaction plays a major role in the low-frequency(i.e.,multiannual)variability of Antarctic sea ice from 2007−22.The related physical process is inferred to manifest as a strong coupling between the surface and the subsurface ocean layers,involving enhanced vertical convection and the downward delivery of the surface anomalies related to ice melting and freezing processes,thus maintaining the SIE anomalies for a longer time.Furthermore,this process mainly occurs in the Amundsen-Bellingshausen Sea(ABS)sector,and the weakened subsurface ocean stratification is the key factor triggering the coupling process in this region.We find that the Circumpolar Deep Water(CDW)over the ABS sector continued to shoal before 2007 and remained stable thereafter.It is speculated that the shoaling of the CDW may be a possible driver leading to the weakening of the subsurface stratification.展开更多
Two-dimensional van der Waals(vdW)magnetic materials,characterized by their tunable magnetism,spin transport properties,and remarkable quantum effects,provide significant promise for the development of efficient,low-p...Two-dimensional van der Waals(vdW)magnetic materials,characterized by their tunable magnetism,spin transport properties,and remarkable quantum effects,provide significant promise for the development of efficient,low-power spintronic devices.Intriguingly,the rare earth tritelluride(RTe3)materials have attracted great attention due to their unique magnetic structure,exotic electronic properties,multiple charge density wave(CDW),and superconductivity under pressure.Here,we report the successful synthesis of high-quality DyTe_(3)single crystals using a self-flux method.DyTe_(3)shows an antiferromagnetic transition at 4.5 K and demonstrates the magnetic field-induced ferromagnetism.The high-quality DyTe_(3)single crystal demonstrates outstanding transport properties,featuring a high carrier mobility of approximately1.4×10^(4)cm^(2)·V^(-1)·s^(-1)and large linear magnetoresistance of 1300%.Furthermore,distinct Shubnikov-de Haas(SdH)oscillations are observed in DyTe_(3),revealing a small Fermi pocket and an effective mass of 0.24 me.Remarkably,the unconventional in-plane negative magnetoresistances appear along the a-axis below 2 T and c-axis until 9 T from 2 K to17 K,which are attributed to the complex helimagnetic structures caused by CDW coupling and weak single-ion anisotropy.Our findings offer a significant platform for understanding the complex magnetoresistance behavior and quantum transport effects in RTe3-type materials,holding great promise for advancing applications in electronic and spintronic devices.展开更多
Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically ex...Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems.展开更多
基金S.A.and M.Z.acknowledge support by NSF,grant number 2230352S.S.D.acknowledges support from the UVA Research Innovation AwardK.S.D.and D.L.work on TMDs has been supported by National Science Foundation Grant No.221949.
文摘Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects offer new possibilities.Here,we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe_(2),focusing on these effects around the charge density wave transition(≈200 K).The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450μVK^(-1) at 184 K,surpassing the Seebeck coefficient.Furthermore,1T-TiSe_(2) exhibits a remarkably broad temperature range(170-400 K)with a Thomson coefficient exceeding 190μV K^(-1),a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges.Additionally,the Nernst coefficient exhibits an unusual temperature dependence,increasing with temperature in the normal phase,which we attribute to bipolar conduction effects.The combination of solid-solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.
文摘目的:探讨CDw75(cluster of differentiation antigen 75)在大肠癌组织中的表达及其和大肠癌浸润、转移和TNM分期等病理特征之间的关系。方法:采用免疫组化SP法检测CDw75抗原在61例大肠癌组织和30例相应正常大肠黏膜组织中的表达,计算阳性细胞的百分率。结果:CDw75在30例正常大肠黏膜中均阴性表达,在61例大肠癌组织中有30例阳性表达。CDw75表达阳性多见于肿瘤直径≥5cm、浸润深度较深、伴淋巴结转移和远处转移及TNMⅢ+Ⅳ期的大肠癌。结论:大肠癌组织中CDw75抗原的表达可作为大肠黏膜恶性转化的一个标志物,并可能用于判断大肠癌的恶性生物学行为。
文摘Worldwide construction and demolition waste (CDW) is currently dumped. To close the building cycle and the building materials cycle by recycling CDW in high technical applications, the technical quality of stony materials must be improved. For this purpose, concrete rubbles and brick rubbles, the two major stony constituents of CDW, should be separated from each other. Based on the differences in density and content of Fe-2O-3 between the two materials, a wet method of jigging and a dry method of magnetic separation are effective,tested.
基金The authors would like to thank the CAPES which sponsored the first author.
文摘The operation of reinforced concrete structures is directly associated with the adhesion between the steel bar and the concrete,which allows the internal forces to be transferred to the reinforcement during the process of loading the structural elements.The modification of the concrete composition,with the introduction of recycled aggregate from construction and demolition waste(CDW),affects the steel-concrete interface and can modify the bonding stress,which is also influenced by the type and diameter of the bar used.In this work,the influence of the recycled fine aggregate(RFA)and types of steel bar on the steel-concrete bond was experimentally evaluated using the pullout test.Conventional concrete and recycled concrete,with RFA replacement level of 25%,were produced.Two types of steel rebars(i.e.,plain and deformed)with diameters of 10.0 and 16.0 mm were considered in this paper.The results indicate a reduction in the adhesion stress with the introduction of recycled aggregate,but this trend is influenced by the diameter of the bar used.The use of ribbed bars modifies the stress bon-slip behavior,with an increase in the average bond strength,which is also observed with the reduction of the diameter of the bar.
文摘In the Temperature-Pressure phase diagram, the quasi-one-dimensional conductor, HMTSF-TCNQ, the ground state at ambient pressure is an insulator of charge density wave (CDW) below 30 K, while it shows a good metallic nature at higher temperature. The CDW insulating state is suppressed by a pressure of 1 GPa, which is considered to be a quantum critical point. Neither at 0 - 0.5 nor 2 GPa but only around this critical point in pressure, field-induced phases appear from 0.2 T through 10 T, where Rxy is almost constant and Rxx is very low. These phenomena are achieved when the magnetic field is applied along the least conducting axis. The behaviors are consistent with a kind of Quantum Hall Effect (QHE). The field-induce phase accompanied by the QHE might be the field-induced CDW (FICDW) similar to that of FISDW, observed in (TMTSF)2X salts. This paper presents the latest result of the Hall effects reviewing the history of the authors’ work on this material from preliminary to the latest ones.
文摘We reference the tunneling Hamiltonian to have particle tunneling among different states represented as wave-functions. Our problem applies wave-functionals to a driven sine-Gordon system. We apply the tunneling Hamiltonian to charge density wave (CDW) transport problems where we consider tunneling among states that are wave-functionals of a scalar quantum field, i.e. derived I-E curves that match Zenier curves used to fit data experimentally with wave-functionals congruent with the false vacuum hypothesis. The open question is whether the coefficients picked in both wave-functionals and the magnitude of the coefficients of the driven sine-Gordon physical system are picked by topological charge arguments that appear to assign values consistent with the false vacuum hypothesis. Crucial results by Fred Cooper et al. allow a mature quantum foam interpretation of false vacuum nucleation for further refinement of our wave-functional results. In doing so, we give credence to topological arguments as a first order phase transition in CDW I-E curves.
基金This work is supported by“Solid State Solar-Thermal Energy Conversion Center(S3TEC)”an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Science under award number DE-SC0001299/DEFG02-09ER46577(Z.F.R.).C.O.wishes to thank Robert D.Farrell,S.J.for editing the MS and the Trustees of Boston College for their financial support.
文摘A charge density wave(CDW)ground state is observed in polycrystalline Cu_(2)Se below 125 K,which corresponds to an energy gap of 40.9 meV and an electron-phonon coupling constant of 0.6.Due to the polycrystalline structure,the Peierls transition process has been expanded to a wide temperature range from 90 K to 160 K.The Hall carrier concentration shows a continuous decrease from 2.1×10^(20)to 1.6×10^(20)cm^(-3)in the temperature range from 160 K to 90 K,while almost unchanged above 160 K and below 90 K.After entering the CDW ground state,a wave-like fluctuation was observed in theI-Vcurve near 50 K,which exhibits a periodic negative differential resistivity in an applied electric field due to the current.We also investigated the doping effect of Zn,Ni,and Te on the CDWground state.Both Zn and Ni doped Cu_(2)Se show a CDW character with increased energy gap and electron-phonon coupling constant,but no notable Peierls transition was observed in Te doped Cu_(2)Se.Similar wave-likeI-Vcurve was also seen in Cu_(1.98)Zn_(0.02)Se near 40 K.The regular fluctuation in the dcI-Vcurve was not magnetic field sensitive,but temperature and sample size sensitive.
基金supported by the National Natural Science Foundation China(Grant No.42176222).
文摘As a crucial component of the Earth’s climate system,Antarctic sea ice has demonstrated significant variability over the satellite era.Here,we identify a remarkable decadal transition in the total Antarctic Sea Ice Extent(SIE).The stage from 1979 to 2006 is characterized by high-frequency(i.e.,seasonal to interannual)temporal variability in SIE and zonal asymmetry in Sea Ice Concentration(SIC),which is primarily under the control of the Amundsen Sea Low(ASL).After 2007,however,sea ice changes exhibit a more spatially homogeneous pattern in SIC and a more temporally long-lasting mode in SIE.Further analysis reveals that sea ice-ocean interaction plays a major role in the low-frequency(i.e.,multiannual)variability of Antarctic sea ice from 2007−22.The related physical process is inferred to manifest as a strong coupling between the surface and the subsurface ocean layers,involving enhanced vertical convection and the downward delivery of the surface anomalies related to ice melting and freezing processes,thus maintaining the SIE anomalies for a longer time.Furthermore,this process mainly occurs in the Amundsen-Bellingshausen Sea(ABS)sector,and the weakened subsurface ocean stratification is the key factor triggering the coupling process in this region.We find that the Circumpolar Deep Water(CDW)over the ABS sector continued to shoal before 2007 and remained stable thereafter.It is speculated that the shoaling of the CDW may be a possible driver leading to the weakening of the subsurface stratification.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62488201 and 1240041502)the Ministry of Science and Technology of China(Grant No.2022YFA1204100)+1 种基金the Chinese Academy of Sciences(Grant No.XDB33030100)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Two-dimensional van der Waals(vdW)magnetic materials,characterized by their tunable magnetism,spin transport properties,and remarkable quantum effects,provide significant promise for the development of efficient,low-power spintronic devices.Intriguingly,the rare earth tritelluride(RTe3)materials have attracted great attention due to their unique magnetic structure,exotic electronic properties,multiple charge density wave(CDW),and superconductivity under pressure.Here,we report the successful synthesis of high-quality DyTe_(3)single crystals using a self-flux method.DyTe_(3)shows an antiferromagnetic transition at 4.5 K and demonstrates the magnetic field-induced ferromagnetism.The high-quality DyTe_(3)single crystal demonstrates outstanding transport properties,featuring a high carrier mobility of approximately1.4×10^(4)cm^(2)·V^(-1)·s^(-1)and large linear magnetoresistance of 1300%.Furthermore,distinct Shubnikov-de Haas(SdH)oscillations are observed in DyTe_(3),revealing a small Fermi pocket and an effective mass of 0.24 me.Remarkably,the unconventional in-plane negative magnetoresistances appear along the a-axis below 2 T and c-axis until 9 T from 2 K to17 K,which are attributed to the complex helimagnetic structures caused by CDW coupling and weak single-ion anisotropy.Our findings offer a significant platform for understanding the complex magnetoresistance behavior and quantum transport effects in RTe3-type materials,holding great promise for advancing applications in electronic and spintronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.62488201)the National Key Research and Development Project of China(Grant No.2022YFA1204100)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700).
文摘Recent advances in strain engineering have enabled unprecedented control over quantum states in strongly correlated magnetic systems.However,nanoscale strain modulation of charge density waves(CDWs)and magnetically excited states,which is crucial for atomically precise strain engineering and practical spintronic applications,remains unexplored.Here,we report the nanoscale strain effects on CDWs and low-energy electronic states in the van der Waals antiferromagnetic metal GdTe_(3),utilizing scanning tunneling microscopy/spectroscopy.Lowtemperature cleavage introduces local strains,resulting in the formation of nanoscale wrinkles on the GdTe_(3)surface.Atomic displacement analysis reveals two distinct types of wrinkles:Wrinkle-I,originating from unidirectional strain,and Wrinkle-II,dominated by shear strain.In Wrinkle-I,the tensile strain enhances the CDW gap,while the compressive strain induces a single low-energy magnetic state.Wrinkle-II switches the orientation of CDW,leading to the formation of an associated CDW domain wall.In addition,three low-energy magnetic states that exhibit magnetic field-dependent shifts and intensity variations emerge within the CDW gap around Wrinkle-II,indicative of a strain-tuned coupling between CDW order and localized 4f-electron magnetism.These findings establish nanoscale strain as a powerful tuning knob for manipulating intertwined electronic and magnetic excitations in correlated magnetic systems.