Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict ...Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict future dynamics. Due to the advances of modern technology, big data becomes increasingly accessible and consequently the problem of reconstructing systems from measured data or time series plays a central role in many scientific disciplines. In recent decades, nonlinear methods rooted in state space reconstruction have been developed, and they do not assume any model equations but can recover the dynamics purely from the measured time series data. In this review, the development of state space reconstruction techniques will be introduced and the recent advances in systems prediction and causality inference using state space reconstruction will be presented. Particularly, the cutting-edge method to deal with short-term time series data will be focused on.Finally, the advantages as well as the remaining problems in this field are discussed.展开更多
It has been evidenced that peer review activities are positively correlated to scientists’bibliometric performance(e.g.,Ortega,2017,2019).However,how the number of paper’reviewing’interacts with a scientist’s’pub...It has been evidenced that peer review activities are positively correlated to scientists’bibliometric performance(e.g.,Ortega,2017,2019).However,how the number of paper’reviewing’interacts with a scientist’s’publishing’has not been addressed in previous studies.This paper attempts to employ the Granger causality inference to explore the directionality between a scientist’s publication performance and his/her review activities.Our dataset comprises scientists’reviewed articles derived from Publons in the Web of Knowledge database,and their publications retrieved from Pub Med.We find that scientists who reviewed less or published less tend to have Granger causality between reviewing and publishing activities.In addition,compared with early-career researchers,reviewing advances publishing for senior scientists.展开更多
Osteoporosis is a known risk factor for rotator cuff tears(RCTs),but the causal correlation and underlying mechanisms remain unclear.This study aims to evaluate the impact of osteoporosis on RCT risk and investigate t...Osteoporosis is a known risk factor for rotator cuff tears(RCTs),but the causal correlation and underlying mechanisms remain unclear.This study aims to evaluate the impact of osteoporosis on RCT risk and investigate their genetic associations.Using data from the UK Biobank(n=457871),cross-sectional analyses demonstrated that osteoporosis was significantly associated with an increased risk of RCTs(adjusted OR[95%CI]=1.38[1.25–1.52]).A longitudinal analysis of a subset of patients(n=268117)over 11 years revealed that osteoporosis increased the risk of RCTs(adjusted HR[95%CI]=1.56[1.29–1.87]),which is notably varied between sexes in sex-stratified analysis.Causal inference methods,including propensity score matching,inverse probability weighting,causal random forest and survival random forest models further confirmed the causal effect,both from cross-sectional and longitudinal perspectives.展开更多
COMPUTATIONAL experiments method is an essential tool for analyzing,designing,managing,and integrating complex systems.However,a significant challenge arises in constructing agents with human-like characteristics to f...COMPUTATIONAL experiments method is an essential tool for analyzing,designing,managing,and integrating complex systems.However,a significant challenge arises in constructing agents with human-like characteristics to form an AI society.Agent modeling typically encompasses four levels:1)The autonomy features of agents,e.g.,perception,behavior,and decision-making;2)The evolutionary features of agents,e.g.,bounded rationality,heterogeneity,and learning evolution;3)The social features of agents,e.g.,interaction,cooperation,and competition;4)The emergent features of agents,e.g.,gaming with environments or regulatory strategies.Traditional modeling techniques primarily derive from ABMs(Agent-based Models)and incorporate various emerging technologies(e.g.,machine learning,big data,and social networks),which can enhance modeling capabilities,while amplifying the complexity[1].展开更多
Understanding how renewable energy generation affects electricity prices is essential for designing efficient and sustainable electricity markets.However,most existing studies rely on regression-based approaches that ...Understanding how renewable energy generation affects electricity prices is essential for designing efficient and sustainable electricity markets.However,most existing studies rely on regression-based approaches that capture correlations but fail to identify causal relationships,particularly in the presence of non-linearities and confounding factors.This limits their value for informing policy and market design in the context of the energy transition.To address this gap,we propose a novel causal inference framework based on local partially linear double machine learning(DML).Our method isolates the true impact of predicted wind and solar power generation on electricity prices by controlling for high-dimensional confounders and allowing for non-linear,context-dependent effects.This represents a substantial methodological advancement over standard econometric techniques.Applying this framework to the UK electricity market over the period 2018-2024,we produce the first robust causal estimates of how renewables affect dayahead wholesale electricity prices.We find that wind power exerts a U-shaped causal effect:at low penetration levels,a 1 GWh increase reduces prices by up to£7/MWh,the effect weakens at mid-levels,and intensifies again at higher penetration.Solar power consistently reduces prices at low penetration levels,up to£9/MWh per additional GWh,but its marginal effect diminishes quickly.Importantly,the magnitude of these effects has increased over time,reflecting the growing influence of renewables on price formation as their share in the energy mix rises.These findings offer a sound empirical basis for improving the design of support schemes,refining capacity planning,and enhancing electricity market efficiency.By providing a robust causal understanding of renewable impacts,our study contributes both methodological innovation and actionable insights to guide future energy policy.展开更多
Offshore drilling costs are high,and the downhole environment is even more complex.Improving the rate of penetration(ROP)can effectively shorten offshore drilling cycles and improve economic benefits.It is difficult f...Offshore drilling costs are high,and the downhole environment is even more complex.Improving the rate of penetration(ROP)can effectively shorten offshore drilling cycles and improve economic benefits.It is difficult for the current ROP models to guarantee the prediction accuracy and the robustness of the models at the same time.To address the current issues,a new ROP prediction model was developed in this study,which considers ROP as a time series signal(ROP signal).The model is based on the time convolutional network(TCN)framework and integrates ensemble empirical modal decomposition(EEMD)and Bayesian network causal inference(BN),the model is named EEMD-BN-TCN.Within the proposed model,the EEMD decomposes the original ROP signal into multiple sets of sub-signals.The BN determines the causal relationship between the sub-signals and the key physical parameters(weight on bit and revolutions per minute)and carries out preliminary reconstruction of the sub-signals based on the causal relationship.The TCN predicts signals reconstructed by BN.When applying this model to an actual production well,the average absolute percentage error of the EEMD-BN-TCN prediction decreased from 18.4%with TCN to 9.2%.In addition,compared with other models,the EEMD-BN-TCN can improve the decomposition signal of ROP by regulating weight on bit and revolutions per minute,ultimately enhancing ROP.展开更多
Diabetic kidney disease(DKD)with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression.Therapeutic targets supported by causal genetic evidence are more likely to succeed ...Diabetic kidney disease(DKD)with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression.Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials.In this study,we integrated large-scale plasma proteomics,genetic-driven causal inference,and experimental validation to identify prioritized targets for DKD using the UK Biobank(UKB)and FinnGen cohorts.Among 2844 diabetic patients(528 with DKD),we identified 37 targets significantly associated with incident DKD,supported by both observational and causal evidence.Of these,22%(8/37)of the potential targets are currently under investigation for DKD or other diseases.Our prospective study confirmed that higher levels of three prioritized targetsdinsulin-like growth factor binding protein 4(IGFBP4),family with sequence similarity 3 member C(FAM3C),and prostaglandin D2 synthase(PTGDS)dwere associated with a 4.35,3.51,and 3.57-fold increased likelihood of developing DKD,respectively.In addition,population-level protein-altering variants(PAVs)analysis and in vitro experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD,through the classic NLR family pyrin domain containing 3(NLRP3)-caspase-1-gasdermin D(GSDMD)apoptotic axis.Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets.展开更多
Hemorrhagic stroke,the second leading cause of stroke,is a severe medical emergency that often leads to severe disability or death;however,the causal relationship between antibody-mediated immune responses and hemorrh...Hemorrhagic stroke,the second leading cause of stroke,is a severe medical emergency that often leads to severe disability or death;however,the causal relationship between antibody-mediated immune responses and hemorrhagic stroke remains unknown.This study aimed to investigate the potential causal relationship between antibody-mediated immune responses to infectious agents and hemorrhagic stroke using the two-sample Mendelian randomization(MR)method.Comprehensive analyses were conducted using publicly available data from genome-wide association study(GWAS),which involved the whole genomes of 9724 European participants and 46 antibody measurement phenotypes,and summary statistics from the FinnGen dataset R12(including intracerebral hemorrhage and subarachnoid hemorrhage)were used.The causal relationship between the aforementioned immune responses and hemorrhagic stroke was analyzed using inverse-variance weighting,MR-Egger regression,weighted median,weighted mode,simple mode,and MR-pleiotropy residual sum and outlier(MR-PRESSO),while various sensitivity analyses were performed to assess heterogeneity and pleiotropy in the study findings.Results showed that human herpes virus 7(HHV-7)U14 antibody levels(OR:0.877,95%CI:0.797-0.964,P=0.007)exerted a protective effect against hemorrhagic stroke,and Chlamydia trachomatis(CT)tarp-D F2 antibody levels(OR:0.937,95%CI:0.885-0.992,P=0.025)had a potential protective effect;additionally,Epstein-Barr virus(EBV)ZEBRA antibody levels(OR:1.062,95%CI:1.012-1.114,P=0.014),human herpesvirus 6(HHV-6)p101k antibody levels(OR:1.054,95%CI:1.002-1.108,P=0.042),and cytomegalovirus(CMV)pp150 antibody levels(OR:1.086,95%CI:1.002-1.176,P=0.045)were potential risk factors for the disease.No significant pleiotropy or heterogeneity was observed in any of the MR analyses.Collectively,these findings confirmed a significant causal relationship between antibody-mediated immune responses and hemorrhagic stroke,and this study contributed to a deeper understanding of the potential mechanisms underlying hemorrhagic stroke onset.展开更多
The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,direc...The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,directly predicting missing components via global characteristics extracted from incomplete inputs.However,this makes detail re-covery challenging,as global characteristics fail to provide complete missing component specifics.A new point cloud completion method named Point-PC is proposed.A memory network and a causal inference model are separately designed to introduce shape priors and select absent shape information as supplementary geometric factors for aiding completion.Concretely,a memory mechanism is proposed to store complete shape features and their associated shapes in a key-value format.The authors design a pre-training strategy that uses contrastive learning to map incomplete shape features into the complete shape feature domain,enabling retrieval of analogous shapes from incomplete inputs.In addition,the authors employ backdoor adjustment to eliminate confounders,which are shape prior components sharing identical semantic structures with incomplete inputs.Experiments conducted on three datasets show that our method achieves superior performance compared to state-of-the-art approaches.The code for Point-PC can be accessed by https://github.com/bizbard/Point-PC.git.展开更多
Associations of per-and polyfluoroalkyl substances(PFAS)on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability.To deeply understand their relationship,a step...Associations of per-and polyfluoroalkyl substances(PFAS)on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability.To deeply understand their relationship,a step-forward in causal inference is expected.To address these,we conducted a longitudinal study with three repeated measurements involving 201 participants in Beijing,among which 100 eligible participants were included for the present study.Twenty-three PFAS and four lipid indicators were assessed at each visit.We used linear mixed models and quantile g-computation models to investigate associations between PFAS and blood lipid levels.A latent class growth model described PFAS serum exposure patterns,and a generalized linear model demonstrated associations between these patterns and lipid variability.Our study found that PFDA was associated with increased TC(β=0.083,95%CI:0.011,0.155)and HDL-C(β=0.106,95%CI:0.034,0.178).The PFAS mixture also showed a positive relationship with TC(β=0.06,95%CI:0.02,0.10),with PFDA contributing most positively.Compared to the low trajectory group,the middle trajectory group for PFDA was associated with VIM of TC(β=0.756,95%CI:0.153,1.359).Furthermore,PFDA showed biological gradientswith lipid metabolism.This is the first repeated-measures study to identify the impact of PFAS serum exposure pattern on the lipid metabolism and the first to estimate the association between PFAS and blood lipid levels in middle-aged and elderly Chinese and reinforce the evidence of their causal relationship through epidemiological studies.展开更多
Modern industrial systems are usually in large scale,consisting of massive components and variables that form a complex system topology.Owing to the interconnections among devices,a fault may occur and propagate to ex...Modern industrial systems are usually in large scale,consisting of massive components and variables that form a complex system topology.Owing to the interconnections among devices,a fault may occur and propagate to exert widespread influences and lead to a variety of alarms.Obtaining the root causes of alarms is beneficial to the decision supports in making corrective alarm responses.Existing data-driven methods for alarm root cause analysis detect causal relations among alarms mainly based on historical alarm event data.To improve the accuracy,this paper proposes a causal fusion inference method for industrial alarm root cause analysis based on process topology and alarm events.A Granger causality inference method considering process topology is exploited to find out the causal relations among alarms.The topological nodes are used as the inputs of the model,and the alarm causal adjacency matrix between alarm variables is obtained by calculating the likelihood of the topological Hawkes process.The root cause is then obtained from the directed acyclic graph(DAG)among alarm variables.The effectiveness of the proposed method is verified by simulations based on both a numerical example and the Tennessee Eastman process(TEP)model.展开更多
Interferon-related genes are involved in antiviral responses,inflammation,and immunity,which are closely related to sepsis-associated acute respiratory distress syndrome(ARDS).We analyzed 1972 participants with genoty...Interferon-related genes are involved in antiviral responses,inflammation,and immunity,which are closely related to sepsis-associated acute respiratory distress syndrome(ARDS).We analyzed 1972 participants with genotype data and 681 participants with gene expression data from the Molecular Epidemiology of ARDS(MEARDS),the Molecular Epidemiology of Sepsis in the ICU(MESSI),and the Molecular Diagnosis and Risk Stratification of Sepsis(MARS)cohorts in a three-step study focusing on sepsis-associated ARDS and sepsis-only controls.First,we identified and validated interferon-related genes associated with sepsis-associated ARDS risk using genetically regulated gene expression(GReX).Second,we examined the association of the confirmed gene(interferon regulatory factor 1,IRF1)with ARDS risk and survival and conducted a mediation analysis.Through discovery and validation,we found that the GReX of IRF1 was associated with ARDS risk(odds ratio[OR_(MEARDS)]=0.84,P=0.008;OR_(MESSI)=0.83,P=0.034).Furthermore,individual-level measured IRF1 expression was associated with reduced ARDS risk(OR=0.58,P=8.67×10^(-4)),and improved overall survival in ARDS patients(hazard ratio[HR_(28-day)]=0.49,P=0.009)and sepsis patients(HR_(28-day)=0.76,P=0.008).Mediation analysis revealed that IRF1 may enhance immune function by regulating the major histocompatibility complex,including HLA-F,which mediated more than 70%of protective effects of IRF1 on ARDS.The findings were validated by in vitro biological experiments including time-series infection dynamics,overexpression,knockout,and chromatin immunoprecipitation sequencing.Early prophylactic interventions to activate IRF1 in sepsis patients,thereby regulating HLA-F,may reduce the risk of ARDS and mortality,especially in severely ill patients.展开更多
Objective Previous studies link lower body mass index(BMI)with increased obsessive-compulsive disorder(OCD)risk,yet other body mass indicators may be more etioloically relevant.We dissected the causal association betw...Objective Previous studies link lower body mass index(BMI)with increased obsessive-compulsive disorder(OCD)risk,yet other body mass indicators may be more etioloically relevant.We dissected the causal association between body fat mass(FM)and OCD.Methods Summary statistics from genome-wide association studies of European ancestry were utilized to conduct two-sample Mendelian randomization analysis.Heterogeneity,horizontal pleiotropy,and sensitivity analyses were performed to assess the robustness.Results The inverse variance weighting method demonstrated that a genetically predicted decrease in FM was causally associated with an increased OCD risk[odds ratio(OR)=0.680,95%confidence interval(CI):0.528–0.875,P=0.003].Similar estimates were obtained using the weighted median approach(OR=0.633,95%CI:0.438–0.915,P=0.015).Each standard deviation increases in genetically predicted body fat percentage corresponded to a reduced OCD risk(OR=0.638,95%CI:0.455–0.896,P=0.009).The sensitivity analysis confirmed the robustness of these findings with no outlier instrument variables identified.Conclusion The negative causal association between FM and the risk of OCD suggests that the prevention or treatment of mental disorders should include not only the control of BMI but also fat distribution and body composition.展开更多
Causal inference is a powerful modeling tool for explanatory analysis,which might enable current machine learning to become explainable.How to marry causal inference with machine learning to develop explainable artifi...Causal inference is a powerful modeling tool for explanatory analysis,which might enable current machine learning to become explainable.How to marry causal inference with machine learning to develop explainable artificial intelligence(XAI)algorithms is one of key steps toward to the artificial intelligence 2.0.With the aim of bringing knowledge of causal inference to scholars of machine learning and artificial intelligence,we invited researchers working on causal inference to write this survey from different aspects of causal inference.This survey includes the following sections:“Estimating average treatment effect:A brief review and beyond”from Dr.Kun Kuang,“Attribution problems in counterfactual inference”from Prof.Lian Li,“The Yule–Simpson paradox and the surrogate paradox”from Prof.Zhi Geng,“Causal potential theory”from Prof.Lei Xu,“Discovering causal information from observational data”from Prof.Kun Zhang,“Formal argumentation in causal reasoning and explanation”from Profs.Beishui Liao and Huaxin Huang,“Causal inference with complex experiments”from Prof.Peng Ding,“Instrumental variables and negative controls for observational studies”from Prof.Wang Miao,and“Causal inference with interference”from Dr.Zhichao Jiang.展开更多
Regression is a widely used econometric tool in research. In observational studies, based on a number of assumptions, regression-based statistical control methods attempt to analyze the causation between treatment and...Regression is a widely used econometric tool in research. In observational studies, based on a number of assumptions, regression-based statistical control methods attempt to analyze the causation between treatment and outcome by adding control variables. However, this approach may not produce reliable estimates of causal effects. In addition to the shortcomings of the method, this lack of confidence is mainly related to ambiguous formulations in econometrics, such as the definition of selection bias, selection of core control variables, and method of testing for robustness. Within the framework of the causal models, we clarify the assumption of causal inference using regression-based statistical controls, as described in econometrics, and discuss how to select core control variables to satisfy this assumption and conduct robustness tests for regression estimates.展开更多
Causal inference prevails in the field of laparoscopic surgery.Once the causality between an intervention and outcome is established,the intervention can be applied to a target population to improve clinical outcomes....Causal inference prevails in the field of laparoscopic surgery.Once the causality between an intervention and outcome is established,the intervention can be applied to a target population to improve clinical outcomes.In many clinical scenarios,interventions are applied longitudinally in response to patients’conditions.Such longitudinal data comprise static variables,such as age,gender,and comorbidities;and dynamic variables,such as the treatment regime,laboratory variables,and vital signs.Some dynamic variables can act as both the confounder and mediator for the effect of an intervention on the outcome;in such cases,simple adjustment with a conventional regression model will bias the effect sizes.To address this,numerous statistical methods are being developed for causal inference;these include,but are not limited to,the structural marginal Cox regression model,dynamic treatment regime,and Cox regression model with time-varying covariates.This technical note provides a gentle introduction to such models and illustrates their use with an example in the field of laparoscopic surgery.展开更多
Statistical approaches for evaluating causal effects and for discovering causal networks are discussed in this paper.A causal relation between two variables is different from an association or correlation between them...Statistical approaches for evaluating causal effects and for discovering causal networks are discussed in this paper.A causal relation between two variables is different from an association or correlation between them.An association measurement between two variables and may be changed dramatically from positive to negative by omitting a third variable,which is called Yule-Simpson paradox.We shall discuss how to evaluate the causal effect of a treatment or exposure on an outcome to avoid the phenomena of Yule-Simpson paradox. Surrogates and intermediate variables are often used to reduce measurement costs or duration when measurement of endpoint variables is expensive,inconvenient,infeasible or unobservable in practice.There have been many criteria for surrogates.However,it is possible that for a surrogate satisfying these criteria,a treatment has a positive effect on the surrogate,which in turn has a positive effect on the outcome,but the treatment has a negative effect on the outcome,which is called the surrogate paradox.We shall discuss criteria for surrogates to avoid the phenomena of the surrogate paradox. Causal networks which describe the causal relationships among a large number of variables have been applied to many research fields.It is important to discover structures of causal networks from observed data.We propose a recursive approach for discovering a causal network in which a structural learning of a large network is decomposed recursively into learning of small networks.Further to discover causal relationships,we present an active learning approach in terms of external interventions on some variables.When we focus on the causes of an interest outcome, instead of discovering a whole network,we propose a local learning approach to discover these causes that affect the outcome.展开更多
Image classification algorithms are commonly based on the Independent and Identically Distribution (i.i.d.) assumption, but in practice, the Out-Of-Distribution (OOD) problem widely exists, that is, the contexts of im...Image classification algorithms are commonly based on the Independent and Identically Distribution (i.i.d.) assumption, but in practice, the Out-Of-Distribution (OOD) problem widely exists, that is, the contexts of images in the model predicting are usually unseen during training. In this case, existing models trained under the i.i.d. assumption are limiting generalisation. Causal inference is an important method to learn the causal associations which are invariant across different environments, thus improving the generalisation ability of the model. However, existing methods usually require partitioning of the environment to learn invariant features, which mostly have imbalance problems due to the lack of constraints. In this paper, we propose a balanced causal learning framework (BCL), starting from how to divide the dataset in a balanced way and the balance of training after the division, which automatically generates fine-grained balanced data partitions in an unsupervised manner and balances the training difficulty of different classes, thereby enhancing the generalisation ability of models in different environments. Experiments on the OOD datasets NICO and NICO++ demonstrate that BCL achieves stable predictions on OOD data, and we also find that models using BCL focus more accurately on the foreground of images compared with the existing causal inference method, which effectively improves the generalisation ability.展开更多
This study’s main purpose is to use Bayesian structural time-series models to investigate the causal effect of an earthquake on the Borsa Istanbul Stock Index.The results reveal a significant negative impact on stock...This study’s main purpose is to use Bayesian structural time-series models to investigate the causal effect of an earthquake on the Borsa Istanbul Stock Index.The results reveal a significant negative impact on stock market value during the post-treatment period.The results indicate rapid divergence from counterfactual predictions,and the actual stock index is lower than would have been expected in the absence of an earthquake.The curve of the actual stock value and the counterfactual prediction after the earthquake suggest a reconvening pattern in the stock market when the stock market resumes its activities.The cumulative impact effect shows a negative effect in relative terms,as evidenced by the decrease in the BIST-100 index of -30%.These results have significant implications for investors and policymakers,emphasizing the need to prepare for natural disasters to minimize their adverse effects on stock market valuations.展开更多
The Sustainable Development Goals(SDGs)represent a solemn commitment by United Nations member states,but achieving them faces numerous challenges,particularly armed conflicts.Here,we analyzed the impact of armed confl...The Sustainable Development Goals(SDGs)represent a solemn commitment by United Nations member states,but achieving them faces numerous challenges,particularly armed conflicts.Here,we analyzed the impact of armed conflict on SDG progress and its driving mechanism through causal inference methods and machine learning technique.The results show that between 2000 and 2021,armed conflicts slowed overall SDG progress by 3.43%,equivalent to a setback of 18 years.The Middle East was the most affected region,with a 6.10%slowdown in progress.The impact of different types of conflict varies across specific goals:interstate conflicts primarily affect SDG 5(Gender Equality)and SDG 7(Affordable and Clean Energy),while intrastate conflicts have a larger impact on SDG 4(Quality Education)and SDG 9(Industry,Innovation and Infrastructure).Additionally,SDG 15(Life on Land)is severely affected by both types of conflict,with long-term consequences.As armed conflicts increase,the development progress would regress rapidly in a non-linear manner.To achieve the SDGs by 2030,it is crucial not only to prevent conflicts but also to proactively address and mitigate their impacts on development.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0505500)Japan Society for the Promotion of Science KAKENHI Program (Grant No. JP15H05707)National Natural Science Foundation of China (Grant Nos. 11771010,31771476,91530320, 91529303,91439103 and 81471047)
文摘Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict future dynamics. Due to the advances of modern technology, big data becomes increasingly accessible and consequently the problem of reconstructing systems from measured data or time series plays a central role in many scientific disciplines. In recent decades, nonlinear methods rooted in state space reconstruction have been developed, and they do not assume any model equations but can recover the dynamics purely from the measured time series data. In this review, the development of state space reconstruction techniques will be introduced and the recent advances in systems prediction and causality inference using state space reconstruction will be presented. Particularly, the cutting-edge method to deal with short-term time series data will be focused on.Finally, the advantages as well as the remaining problems in this field are discussed.
文摘It has been evidenced that peer review activities are positively correlated to scientists’bibliometric performance(e.g.,Ortega,2017,2019).However,how the number of paper’reviewing’interacts with a scientist’s’publishing’has not been addressed in previous studies.This paper attempts to employ the Granger causality inference to explore the directionality between a scientist’s publication performance and his/her review activities.Our dataset comprises scientists’reviewed articles derived from Publons in the Web of Knowledge database,and their publications retrieved from Pub Med.We find that scientists who reviewed less or published less tend to have Granger causality between reviewing and publishing activities.In addition,compared with early-career researchers,reviewing advances publishing for senior scientists.
基金the Scientific Research Innovation Capability Support Project for Young Faculty(ZYGXQNJSKYCXNLZCXM-H8)Fundamental Research Funds for the Central Universities(2024ZYGXZR077)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2023B1515120006)Guangzhou Basic and Applied Basic Research Foundation(2024A04J5776)the Research Fund(2023QN10Y421)Guangzhou Talent Recruitment Team Program(2024D03J0004),all related to this study.
文摘Osteoporosis is a known risk factor for rotator cuff tears(RCTs),but the causal correlation and underlying mechanisms remain unclear.This study aims to evaluate the impact of osteoporosis on RCT risk and investigate their genetic associations.Using data from the UK Biobank(n=457871),cross-sectional analyses demonstrated that osteoporosis was significantly associated with an increased risk of RCTs(adjusted OR[95%CI]=1.38[1.25–1.52]).A longitudinal analysis of a subset of patients(n=268117)over 11 years revealed that osteoporosis increased the risk of RCTs(adjusted HR[95%CI]=1.56[1.29–1.87]),which is notably varied between sexes in sex-stratified analysis.Causal inference methods,including propensity score matching,inverse probability weighting,causal random forest and survival random forest models further confirmed the causal effect,both from cross-sectional and longitudinal perspectives.
基金supported in part by National Key Research and Development Program of China(2021YFF0900800)National Natural Science Foundation of China(62472306,62441221,62206116)+2 种基金Tianjin University’s 2024 Special Project on Disciplinary Development(XKJS-2024-5-9)Tianjin University Talent Innovation Reward Program for Literature&Science Graduate Student(C1-2022-010)Shanxi Province Social Science Foundation(2020F002).
文摘COMPUTATIONAL experiments method is an essential tool for analyzing,designing,managing,and integrating complex systems.However,a significant challenge arises in constructing agents with human-like characteristics to form an AI society.Agent modeling typically encompasses four levels:1)The autonomy features of agents,e.g.,perception,behavior,and decision-making;2)The evolutionary features of agents,e.g.,bounded rationality,heterogeneity,and learning evolution;3)The social features of agents,e.g.,interaction,cooperation,and competition;4)The emergent features of agents,e.g.,gaming with environments or regulatory strategies.Traditional modeling techniques primarily derive from ABMs(Agent-based Models)and incorporate various emerging technologies(e.g.,machine learning,big data,and social networks),which can enhance modeling capabilities,while amplifying the complexity[1].
文摘Understanding how renewable energy generation affects electricity prices is essential for designing efficient and sustainable electricity markets.However,most existing studies rely on regression-based approaches that capture correlations but fail to identify causal relationships,particularly in the presence of non-linearities and confounding factors.This limits their value for informing policy and market design in the context of the energy transition.To address this gap,we propose a novel causal inference framework based on local partially linear double machine learning(DML).Our method isolates the true impact of predicted wind and solar power generation on electricity prices by controlling for high-dimensional confounders and allowing for non-linear,context-dependent effects.This represents a substantial methodological advancement over standard econometric techniques.Applying this framework to the UK electricity market over the period 2018-2024,we produce the first robust causal estimates of how renewables affect dayahead wholesale electricity prices.We find that wind power exerts a U-shaped causal effect:at low penetration levels,a 1 GWh increase reduces prices by up to£7/MWh,the effect weakens at mid-levels,and intensifies again at higher penetration.Solar power consistently reduces prices at low penetration levels,up to£9/MWh per additional GWh,but its marginal effect diminishes quickly.Importantly,the magnitude of these effects has increased over time,reflecting the growing influence of renewables on price formation as their share in the energy mix rises.These findings offer a sound empirical basis for improving the design of support schemes,refining capacity planning,and enhancing electricity market efficiency.By providing a robust causal understanding of renewable impacts,our study contributes both methodological innovation and actionable insights to guide future energy policy.
基金the financial support by the National Natural Science Foundation of China(Grant No.U24B2029)the Key Projects of the National Natural Science Foundation of China(Grant No.52334001)+1 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(Grand No.ZLZX2020-02)the China University of Petroleum,Beijing(Grand No.ZX20230042)。
文摘Offshore drilling costs are high,and the downhole environment is even more complex.Improving the rate of penetration(ROP)can effectively shorten offshore drilling cycles and improve economic benefits.It is difficult for the current ROP models to guarantee the prediction accuracy and the robustness of the models at the same time.To address the current issues,a new ROP prediction model was developed in this study,which considers ROP as a time series signal(ROP signal).The model is based on the time convolutional network(TCN)framework and integrates ensemble empirical modal decomposition(EEMD)and Bayesian network causal inference(BN),the model is named EEMD-BN-TCN.Within the proposed model,the EEMD decomposes the original ROP signal into multiple sets of sub-signals.The BN determines the causal relationship between the sub-signals and the key physical parameters(weight on bit and revolutions per minute)and carries out preliminary reconstruction of the sub-signals based on the causal relationship.The TCN predicts signals reconstructed by BN.When applying this model to an actual production well,the average absolute percentage error of the EEMD-BN-TCN prediction decreased from 18.4%with TCN to 9.2%.In addition,compared with other models,the EEMD-BN-TCN can improve the decomposition signal of ROP by regulating weight on bit and revolutions per minute,ultimately enhancing ROP.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82204396,82304491,and 82400511).
文摘Diabetic kidney disease(DKD)with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression.Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials.In this study,we integrated large-scale plasma proteomics,genetic-driven causal inference,and experimental validation to identify prioritized targets for DKD using the UK Biobank(UKB)and FinnGen cohorts.Among 2844 diabetic patients(528 with DKD),we identified 37 targets significantly associated with incident DKD,supported by both observational and causal evidence.Of these,22%(8/37)of the potential targets are currently under investigation for DKD or other diseases.Our prospective study confirmed that higher levels of three prioritized targetsdinsulin-like growth factor binding protein 4(IGFBP4),family with sequence similarity 3 member C(FAM3C),and prostaglandin D2 synthase(PTGDS)dwere associated with a 4.35,3.51,and 3.57-fold increased likelihood of developing DKD,respectively.In addition,population-level protein-altering variants(PAVs)analysis and in vitro experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD,through the classic NLR family pyrin domain containing 3(NLRP3)-caspase-1-gasdermin D(GSDMD)apoptotic axis.Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets.
基金Supported by the National Natural Science Foundations of China(82271340,82071368)。
文摘Hemorrhagic stroke,the second leading cause of stroke,is a severe medical emergency that often leads to severe disability or death;however,the causal relationship between antibody-mediated immune responses and hemorrhagic stroke remains unknown.This study aimed to investigate the potential causal relationship between antibody-mediated immune responses to infectious agents and hemorrhagic stroke using the two-sample Mendelian randomization(MR)method.Comprehensive analyses were conducted using publicly available data from genome-wide association study(GWAS),which involved the whole genomes of 9724 European participants and 46 antibody measurement phenotypes,and summary statistics from the FinnGen dataset R12(including intracerebral hemorrhage and subarachnoid hemorrhage)were used.The causal relationship between the aforementioned immune responses and hemorrhagic stroke was analyzed using inverse-variance weighting,MR-Egger regression,weighted median,weighted mode,simple mode,and MR-pleiotropy residual sum and outlier(MR-PRESSO),while various sensitivity analyses were performed to assess heterogeneity and pleiotropy in the study findings.Results showed that human herpes virus 7(HHV-7)U14 antibody levels(OR:0.877,95%CI:0.797-0.964,P=0.007)exerted a protective effect against hemorrhagic stroke,and Chlamydia trachomatis(CT)tarp-D F2 antibody levels(OR:0.937,95%CI:0.885-0.992,P=0.025)had a potential protective effect;additionally,Epstein-Barr virus(EBV)ZEBRA antibody levels(OR:1.062,95%CI:1.012-1.114,P=0.014),human herpesvirus 6(HHV-6)p101k antibody levels(OR:1.054,95%CI:1.002-1.108,P=0.042),and cytomegalovirus(CMV)pp150 antibody levels(OR:1.086,95%CI:1.002-1.176,P=0.045)were potential risk factors for the disease.No significant pleiotropy or heterogeneity was observed in any of the MR analyses.Collectively,these findings confirmed a significant causal relationship between antibody-mediated immune responses and hemorrhagic stroke,and this study contributed to a deeper understanding of the potential mechanisms underlying hemorrhagic stroke onset.
基金National Key Research and Development Program of China,Grant/Award Number:2020YFB1711704。
文摘The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,directly predicting missing components via global characteristics extracted from incomplete inputs.However,this makes detail re-covery challenging,as global characteristics fail to provide complete missing component specifics.A new point cloud completion method named Point-PC is proposed.A memory network and a causal inference model are separately designed to introduce shape priors and select absent shape information as supplementary geometric factors for aiding completion.Concretely,a memory mechanism is proposed to store complete shape features and their associated shapes in a key-value format.The authors design a pre-training strategy that uses contrastive learning to map incomplete shape features into the complete shape feature domain,enabling retrieval of analogous shapes from incomplete inputs.In addition,the authors employ backdoor adjustment to eliminate confounders,which are shape prior components sharing identical semantic structures with incomplete inputs.Experiments conducted on three datasets show that our method achieves superior performance compared to state-of-the-art approaches.The code for Point-PC can be accessed by https://github.com/bizbard/Point-PC.git.
基金supported by the National Natural Science Foundation of China(No.82404365)the Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0513200)+7 种基金China Medical Board(No.15-230)China Postdoctoral Science Foundation(Nos.2023M730317and 2023T160066)the Fundamental Research Funds for the Central Universities(No.3332023042)the Open Project of Hebei Key Laboratory of Environment and Human Health(No.202301)the National Key Research and Development Program of China(No.2022YFC3703000)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(No.2022-JKCS-11)the CAMS Innovation Fund for Medical Sciences(No.2022-I2M-JB-003)the Programs of the National Natural Science Foundation of China(No.21976050).
文摘Associations of per-and polyfluoroalkyl substances(PFAS)on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability.To deeply understand their relationship,a step-forward in causal inference is expected.To address these,we conducted a longitudinal study with three repeated measurements involving 201 participants in Beijing,among which 100 eligible participants were included for the present study.Twenty-three PFAS and four lipid indicators were assessed at each visit.We used linear mixed models and quantile g-computation models to investigate associations between PFAS and blood lipid levels.A latent class growth model described PFAS serum exposure patterns,and a generalized linear model demonstrated associations between these patterns and lipid variability.Our study found that PFDA was associated with increased TC(β=0.083,95%CI:0.011,0.155)and HDL-C(β=0.106,95%CI:0.034,0.178).The PFAS mixture also showed a positive relationship with TC(β=0.06,95%CI:0.02,0.10),with PFDA contributing most positively.Compared to the low trajectory group,the middle trajectory group for PFDA was associated with VIM of TC(β=0.756,95%CI:0.153,1.359).Furthermore,PFDA showed biological gradientswith lipid metabolism.This is the first repeated-measures study to identify the impact of PFAS serum exposure pattern on the lipid metabolism and the first to estimate the association between PFAS and blood lipid levels in middle-aged and elderly Chinese and reinforce the evidence of their causal relationship through epidemiological studies.
基金supported by the National Natural Science Foundation of China(Nos.61903345 and 61973287)。
文摘Modern industrial systems are usually in large scale,consisting of massive components and variables that form a complex system topology.Owing to the interconnections among devices,a fault may occur and propagate to exert widespread influences and lead to a variety of alarms.Obtaining the root causes of alarms is beneficial to the decision supports in making corrective alarm responses.Existing data-driven methods for alarm root cause analysis detect causal relations among alarms mainly based on historical alarm event data.To improve the accuracy,this paper proposes a causal fusion inference method for industrial alarm root cause analysis based on process topology and alarm events.A Granger causality inference method considering process topology is exploited to find out the causal relations among alarms.The topological nodes are used as the inputs of the model,and the alarm causal adjacency matrix between alarm variables is obtained by calculating the likelihood of the topological Hawkes process.The root cause is then obtained from the directed acyclic graph(DAG)among alarm variables.The effectiveness of the proposed method is verified by simulations based on both a numerical example and the Tennessee Eastman process(TEP)model.
基金supported by the National Natural Science Foundation of China(Grant No.82220108002 to F.C.and Grant No.82273737 to R.Z.)the U.S.National Institutes of Health(Grant Nos.CA209414,HL060710,and ES000002 to D.C.C.,Grant Nos.CA209414 and CA249096 to Y.L.)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province and the Outstanding Young Level Academic Leadership Training Program of Nanjing Medical University.
文摘Interferon-related genes are involved in antiviral responses,inflammation,and immunity,which are closely related to sepsis-associated acute respiratory distress syndrome(ARDS).We analyzed 1972 participants with genotype data and 681 participants with gene expression data from the Molecular Epidemiology of ARDS(MEARDS),the Molecular Epidemiology of Sepsis in the ICU(MESSI),and the Molecular Diagnosis and Risk Stratification of Sepsis(MARS)cohorts in a three-step study focusing on sepsis-associated ARDS and sepsis-only controls.First,we identified and validated interferon-related genes associated with sepsis-associated ARDS risk using genetically regulated gene expression(GReX).Second,we examined the association of the confirmed gene(interferon regulatory factor 1,IRF1)with ARDS risk and survival and conducted a mediation analysis.Through discovery and validation,we found that the GReX of IRF1 was associated with ARDS risk(odds ratio[OR_(MEARDS)]=0.84,P=0.008;OR_(MESSI)=0.83,P=0.034).Furthermore,individual-level measured IRF1 expression was associated with reduced ARDS risk(OR=0.58,P=8.67×10^(-4)),and improved overall survival in ARDS patients(hazard ratio[HR_(28-day)]=0.49,P=0.009)and sepsis patients(HR_(28-day)=0.76,P=0.008).Mediation analysis revealed that IRF1 may enhance immune function by regulating the major histocompatibility complex,including HLA-F,which mediated more than 70%of protective effects of IRF1 on ARDS.The findings were validated by in vitro biological experiments including time-series infection dynamics,overexpression,knockout,and chromatin immunoprecipitation sequencing.Early prophylactic interventions to activate IRF1 in sepsis patients,thereby regulating HLA-F,may reduce the risk of ARDS and mortality,especially in severely ill patients.
基金supported by the Yanzhao Gold Talent Project of Hebei Province(NO.HJZD202506)。
文摘Objective Previous studies link lower body mass index(BMI)with increased obsessive-compulsive disorder(OCD)risk,yet other body mass indicators may be more etioloically relevant.We dissected the causal association between body fat mass(FM)and OCD.Methods Summary statistics from genome-wide association studies of European ancestry were utilized to conduct two-sample Mendelian randomization analysis.Heterogeneity,horizontal pleiotropy,and sensitivity analyses were performed to assess the robustness.Results The inverse variance weighting method demonstrated that a genetically predicted decrease in FM was causally associated with an increased OCD risk[odds ratio(OR)=0.680,95%confidence interval(CI):0.528–0.875,P=0.003].Similar estimates were obtained using the weighted median approach(OR=0.633,95%CI:0.438–0.915,P=0.015).Each standard deviation increases in genetically predicted body fat percentage corresponded to a reduced OCD risk(OR=0.638,95%CI:0.455–0.896,P=0.009).The sensitivity analysis confirmed the robustness of these findings with no outlier instrument variables identified.Conclusion The negative causal association between FM and the risk of OCD suggests that the prevention or treatment of mental disorders should include not only the control of BMI but also fat distribution and body composition.
文摘Causal inference is a powerful modeling tool for explanatory analysis,which might enable current machine learning to become explainable.How to marry causal inference with machine learning to develop explainable artificial intelligence(XAI)algorithms is one of key steps toward to the artificial intelligence 2.0.With the aim of bringing knowledge of causal inference to scholars of machine learning and artificial intelligence,we invited researchers working on causal inference to write this survey from different aspects of causal inference.This survey includes the following sections:“Estimating average treatment effect:A brief review and beyond”from Dr.Kun Kuang,“Attribution problems in counterfactual inference”from Prof.Lian Li,“The Yule–Simpson paradox and the surrogate paradox”from Prof.Zhi Geng,“Causal potential theory”from Prof.Lei Xu,“Discovering causal information from observational data”from Prof.Kun Zhang,“Formal argumentation in causal reasoning and explanation”from Profs.Beishui Liao and Huaxin Huang,“Causal inference with complex experiments”from Prof.Peng Ding,“Instrumental variables and negative controls for observational studies”from Prof.Wang Miao,and“Causal inference with interference”from Dr.Zhichao Jiang.
基金This research was funded by the National Natural Science Foundation of China(Grant No.72074060).
文摘Regression is a widely used econometric tool in research. In observational studies, based on a number of assumptions, regression-based statistical control methods attempt to analyze the causation between treatment and outcome by adding control variables. However, this approach may not produce reliable estimates of causal effects. In addition to the shortcomings of the method, this lack of confidence is mainly related to ambiguous formulations in econometrics, such as the definition of selection bias, selection of core control variables, and method of testing for robustness. Within the framework of the causal models, we clarify the assumption of causal inference using regression-based statistical controls, as described in econometrics, and discuss how to select core control variables to satisfy this assumption and conduct robustness tests for regression estimates.
基金funding from the National Natural Science Foundation of China(82272180)Open Foundation of Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province(SZZD202206)+2 种基金funding from the Sichuan Medical Association Scientific Research Project(S21019)funding from the Key Research and Development Project of Zhejiang Province(2021C03071)funding from Zhejiang Medical and Health Science and Technology Project(2017ZD001)。
文摘Causal inference prevails in the field of laparoscopic surgery.Once the causality between an intervention and outcome is established,the intervention can be applied to a target population to improve clinical outcomes.In many clinical scenarios,interventions are applied longitudinally in response to patients’conditions.Such longitudinal data comprise static variables,such as age,gender,and comorbidities;and dynamic variables,such as the treatment regime,laboratory variables,and vital signs.Some dynamic variables can act as both the confounder and mediator for the effect of an intervention on the outcome;in such cases,simple adjustment with a conventional regression model will bias the effect sizes.To address this,numerous statistical methods are being developed for causal inference;these include,but are not limited to,the structural marginal Cox regression model,dynamic treatment regime,and Cox regression model with time-varying covariates.This technical note provides a gentle introduction to such models and illustrates their use with an example in the field of laparoscopic surgery.
文摘Statistical approaches for evaluating causal effects and for discovering causal networks are discussed in this paper.A causal relation between two variables is different from an association or correlation between them.An association measurement between two variables and may be changed dramatically from positive to negative by omitting a third variable,which is called Yule-Simpson paradox.We shall discuss how to evaluate the causal effect of a treatment or exposure on an outcome to avoid the phenomena of Yule-Simpson paradox. Surrogates and intermediate variables are often used to reduce measurement costs or duration when measurement of endpoint variables is expensive,inconvenient,infeasible or unobservable in practice.There have been many criteria for surrogates.However,it is possible that for a surrogate satisfying these criteria,a treatment has a positive effect on the surrogate,which in turn has a positive effect on the outcome,but the treatment has a negative effect on the outcome,which is called the surrogate paradox.We shall discuss criteria for surrogates to avoid the phenomena of the surrogate paradox. Causal networks which describe the causal relationships among a large number of variables have been applied to many research fields.It is important to discover structures of causal networks from observed data.We propose a recursive approach for discovering a causal network in which a structural learning of a large network is decomposed recursively into learning of small networks.Further to discover causal relationships,we present an active learning approach in terms of external interventions on some variables.When we focus on the causes of an interest outcome, instead of discovering a whole network,we propose a local learning approach to discover these causes that affect the outcome.
基金TaiShan Scholars Program(Grant no.tsqn202211289)National Key R&D Program of China(Grant no.2021YFC3300203)Oversea Innovation Team Project of the“20 Regulations for New Universities”funding program of Jinan(Grant no.2021GXRC073),and the Excellent Youth Scholars Program of Shandong Province(Grant no.2022HWYQ-048).
文摘Image classification algorithms are commonly based on the Independent and Identically Distribution (i.i.d.) assumption, but in practice, the Out-Of-Distribution (OOD) problem widely exists, that is, the contexts of images in the model predicting are usually unseen during training. In this case, existing models trained under the i.i.d. assumption are limiting generalisation. Causal inference is an important method to learn the causal associations which are invariant across different environments, thus improving the generalisation ability of the model. However, existing methods usually require partitioning of the environment to learn invariant features, which mostly have imbalance problems due to the lack of constraints. In this paper, we propose a balanced causal learning framework (BCL), starting from how to divide the dataset in a balanced way and the balance of training after the division, which automatically generates fine-grained balanced data partitions in an unsupervised manner and balances the training difficulty of different classes, thereby enhancing the generalisation ability of models in different environments. Experiments on the OOD datasets NICO and NICO++ demonstrate that BCL achieves stable predictions on OOD data, and we also find that models using BCL focus more accurately on the foreground of images compared with the existing causal inference method, which effectively improves the generalisation ability.
文摘This study’s main purpose is to use Bayesian structural time-series models to investigate the causal effect of an earthquake on the Borsa Istanbul Stock Index.The results reveal a significant negative impact on stock market value during the post-treatment period.The results indicate rapid divergence from counterfactual predictions,and the actual stock index is lower than would have been expected in the absence of an earthquake.The curve of the actual stock value and the counterfactual prediction after the earthquake suggest a reconvening pattern in the stock market when the stock market resumes its activities.The cumulative impact effect shows a negative effect in relative terms,as evidenced by the decrease in the BIST-100 index of -30%.These results have significant implications for investors and policymakers,emphasizing the need to prepare for natural disasters to minimize their adverse effects on stock market valuations.
基金supported and funded by the Special Research Assistant Program of Chinese Academy of Sciences(Grant No.E3S30015Y5)Maria de Maeztu excellence accreditation 2023–2026(Ref.CEX2021-001201-M),funded by MCIN/AEI/10.13039/501100011033。
文摘The Sustainable Development Goals(SDGs)represent a solemn commitment by United Nations member states,but achieving them faces numerous challenges,particularly armed conflicts.Here,we analyzed the impact of armed conflict on SDG progress and its driving mechanism through causal inference methods and machine learning technique.The results show that between 2000 and 2021,armed conflicts slowed overall SDG progress by 3.43%,equivalent to a setback of 18 years.The Middle East was the most affected region,with a 6.10%slowdown in progress.The impact of different types of conflict varies across specific goals:interstate conflicts primarily affect SDG 5(Gender Equality)and SDG 7(Affordable and Clean Energy),while intrastate conflicts have a larger impact on SDG 4(Quality Education)and SDG 9(Industry,Innovation and Infrastructure).Additionally,SDG 15(Life on Land)is severely affected by both types of conflict,with long-term consequences.As armed conflicts increase,the development progress would regress rapidly in a non-linear manner.To achieve the SDGs by 2030,it is crucial not only to prevent conflicts but also to proactively address and mitigate their impacts on development.