期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
Causal Representation Enhances Cross-Domain Named Entity Recognition in Large Language Models
1
作者 Jiahao Wu Jinzhong Xu +2 位作者 Xiaoming Liu Guan Yang Jie Liu 《Computers, Materials & Continua》 2025年第5期2809-2828,共20页
Large language models cross-domain named entity recognition task in the face of the scarcity of large language labeled data in a specific domain,due to the entity bias arising from the variation of entity information ... Large language models cross-domain named entity recognition task in the face of the scarcity of large language labeled data in a specific domain,due to the entity bias arising from the variation of entity information between different domains,which makes large language models prone to spurious correlations problems when dealing with specific domains and entities.In order to solve this problem,this paper proposes a cross-domain named entity recognition method based on causal graph structure enhancement,which captures the cross-domain invariant causal structural representations between feature representations of text sequences and annotation sequences by establishing a causal learning and intervention module,so as to improve the utilization of causal structural features by the large languagemodels in the target domains,and thus effectively alleviate the false entity bias triggered by the false relevance problem;meanwhile,through the semantic feature fusion module,the semantic information of the source and target domains is effectively combined.The results show an improvement of 2.47%and 4.12%in the political and medical domains,respectively,compared with the benchmark model,and an excellent performance in small-sample scenarios,which proves the effectiveness of causal graph structural enhancement in improving the accuracy of cross-domain entity recognition and reducing false correlations. 展开更多
关键词 Large language model entity bias causal graph structure
在线阅读 下载PDF
LEARNING CAUSAL GRAPHS OF NONLINEAR STRUCTURAL VECTOR AUTOREGRESSIVE MODEL USING INFORMATION THEORY CRITERIA 被引量:1
2
作者 WEI Yuesong TIAN Zheng XIAO Yanting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1213-1226,共14页
Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis. Traditional causality inference methods have a salient limitation that the model must be linea... Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis. Traditional causality inference methods have a salient limitation that the model must be linear and with Gaussian noise. Although additive model regression can effectively infer the nonlinear causal relationships of additive nonlinear time series, it suffers from the limitation that contemporaneous causal relationships of variables must be linear and not always valid to test conditional independence relations. This paper provides a nonparametric method that employs both mutual information and conditional mutual information to identify causal structure of a class of nonlinear time series models, which extends the additive nonlinear times series to nonlinear structural vector autoregressive models. An algorithm is developed to learn the contemporaneous and the lagged causal relationships of variables. Simulations demonstrate the effectiveness of the nroosed method. 展开更多
关键词 causal graphs conditional independence conditional mutual information nonlinear struc-tural vector autoregressive model.
原文传递
LEARNING MULTIVARIATE TIME SERIES CAUSAL GRAPHS BASED ON CONDITIONAL MUTUAL INFORMATION 被引量:1
3
作者 Yuesong WEI Zheng TIAN Yanting XIAO 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2013年第1期38-51,共14页
Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis.This paper provides a method that employs both mutual information and conditional mutual inform... Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis.This paper provides a method that employs both mutual information and conditional mutual information to identify the causal structure of multivariate time series causal graphical models.A three-step procedure is developed to learn the contemporaneous and the lagged causal relationships of time series causal graphs.Contrary to conventional constraint-based algorithm, the proposed algorithm does not involve any special kinds of distribution and is nonparametric.These properties are especially appealing for inference of time series causal graphs when the prior knowledge about the data model is not available.Simulations and case analysis demonstrate the effectiveness of the method. 展开更多
关键词 Multivariate time series causal graphs conditional independence conditional mutual information
原文传递
基于改进causality graph的分布式可伸缩事件关联机制
4
作者 郭楠 高天寒 赵宏 《通信学报》 EI CSCD 北大核心 2004年第4期23-30,共8页
传统事件关联技术无法有效满足分布式网络管理的需求,本文提出一种分布式可伸缩事件关联机制,采用先分布再集中的关联模式与自适应可伸缩的关联关系。定义了本地关联和网络关联两个过程,首先由设备进行本地关联,而后各地关联结果汇总到... 传统事件关联技术无法有效满足分布式网络管理的需求,本文提出一种分布式可伸缩事件关联机制,采用先分布再集中的关联模式与自适应可伸缩的关联关系。定义了本地关联和网络关联两个过程,首先由设备进行本地关联,而后各地关联结果汇总到管理平台进行网络关联;将事件的关联关系与管理任务的关联关系相结合,根据管理任务在设备端的动态配置情况构建自适应可伸缩的关联关系,并支持对逻辑事件的推理。同时,在改进Causality Graph算法的基础上提出了实现该机制的相关算法。原型系统的应用实例验证了机制的有效性和优越性。 展开更多
关键词 分布式网络管理 事件关联 分布式可伸缩事件关联 因果关系图
在线阅读 下载PDF
Integrated causal inference modeling uncovers novel causal factors and potential therapeutic targets of Qingjin Yiqi granules for chronic fatigue syndrome
5
作者 Junrong Li Xiaobing Zhai +6 位作者 Jixing Liu Chi Kin Lam Weiyu Meng Yuefei Wang Shu Li Yapeng Wang Kefeng Li 《Acupuncture and Herbal Medicine》 2024年第1期122-133,共12页
Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a cli... Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a clinically approved formula for treating post-COVID-19;however,its potential as a drug target for treating CFS remains largely unknown.This study aimed to identify novel causal factors for CFS and elucidate the potential targets and pharmacological mechanisms of action of QJYQ in treating CFS.Methods:This prospective cohort analysis included 4,212 adults aged≥65 years who were followed up for 7 years with 435 incident CFS cases.Causal modeling and multivariate logistic regression analysis were performed to identify the potential causal determinants of CFS.A proteome-wide,two-sample Mendelian randomization(MR)analysis was employed to explore the proteins associated with the identified causal factors of CFS,which may serve as potential drug targets.Furthermore,we performed a virtual screening analysis to assess the binding affinity between the bioactive compounds in QJYQ and CFS-associated proteins.Results:Among 4,212 participants(47.5%men)with a median age of 69 years(interquartile range:69–70 years)enrolled in 2004,435 developed CFS by 2011.Causal graph analysis with multivariate logistic regression identified frequent cough(odds ratio:1.74,95%confidence interval[CI]:1.15–2.63)and insomnia(odds ratio:2.59,95%CI:1.77–3.79)as novel causal factors of CFS.Proteome-wide MR analysis revealed that the upregulation of endothelial cell-selective adhesion molecule(ESAM)was causally linked to both chronic cough(odds ratio:1.019,95%CI:1.012–1.026,P=2.75 e^(−05))and insomnia(odds ratio:1.015,95%CI:1.008–1.022,P=4.40 e^(−08))in CFS.The major bioactive compounds of QJYQ,ginsenoside Rb2(docking score:−6.03)and RG4(docking score:−6.15),bound to ESAM with high affinity based on virtual screening.Conclusions:Our integrated analytical framework combining epidemiological,genetic,and in silico data provides a novel strategy for elucidating complex disease mechanisms,such as CFS,and informing models of action of traditional Chinese medicines,such as QJYQ.Further validation in animal models is warranted to confirm the potential pharmacological effects of QJYQ on ESAM and as a treatment for CFS. 展开更多
关键词 causal factors causal graph analysis Chronic fatigue syndrome Drug targets Mendelian randomization Qingjin Yiqi
暂未订购
Optimization of a dynamic uncertain causality graph for fault diagnosis in nuclear power plant 被引量:2
6
作者 Yue Zhao Francesco Di Maio +3 位作者 Enrico Zio Qin Zhang Chun-Ling Dong Jin-Ying Zhang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第3期59-67,共9页
Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neuro... Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neurofuzzy approaches, support vector machine, K-nearest neighbor classifiers and inference methodologies. Among these methods, dynamic uncertain causality graph(DUCG)has been proved effective in many practical cases. However, the causal graph construction behind the DUCG is complicate and, in many cases, results redundant on the symptoms needed to correctly classify the fault. In this paper, we propose a method to simplify causal graph construction in an automatic way. The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree(FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT. Genetic algorithm(GA) is, then, used for the optimization of the FDT, by performing a wrapper search around the FDT: the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system. The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation. The results show that the FDT, with GA-optimized symptoms and diagnosis strategy, can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis. 展开更多
关键词 DYNAMIC UNCERTAIN causalITY graph Fault diagnosis Classification Fuzzy DECISION tree GENETIC algorithm Nuclear power plant
在线阅读 下载PDF
Intelligent diagnosis of jaundice with dynamic uncertain causality graph model 被引量:1
7
作者 Shao-rui HAO Shi-chao GENG +3 位作者 Lin-xiao FAN Jia-jia CHEN Qin ZHANG Lan-juan LI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2017年第5期393-401,共9页
Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause o... Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is faidy difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic rea- soning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. 展开更多
关键词 JAUNDICE Intelligent diagnosis Dynamic uncertain causality graph Expert system
原文传递
基于混合因果逻辑的尾矿坝事故知识图谱构建与应用 被引量:3
8
作者 郭梨 高元 +1 位作者 吴昊 杨震 《金属矿山》 北大核心 2025年第1期233-242,共10页
针对尾矿坝事故风险分析的复杂性和不确定性,提出了一种基于混合因果逻辑的尾矿坝事故知识图谱构建与应用方法。该方法首先设计了尾矿坝事故风险分析的混合因果逻辑模型框架,针对尾矿坝自身风险,识别确定性因果逻辑关系;针对人为组织失... 针对尾矿坝事故风险分析的复杂性和不确定性,提出了一种基于混合因果逻辑的尾矿坝事故知识图谱构建与应用方法。该方法首先设计了尾矿坝事故风险分析的混合因果逻辑模型框架,针对尾矿坝自身风险,识别确定性因果逻辑关系;针对人为组织失误,识别非确定性的因果关系。在此模型中,事件序列图位于最顶层,用于风险逻辑演化和计算事故发生概率;中间层为故障树,探究关键事件发生的原因;贝叶斯网络位于最底层,分析具有变化性且相互关联的事件或因子的影响,评估人为和组织失效的概率。然后根据所得到的节点及其之间的逻辑关系,采用Python+Neo4j方法转化为基于混合因果逻辑的尾矿坝事故知识图谱。以降雨引发的尾矿坝事故为例,分析了尾矿坝事故的主要原因和影响因素,以及它们之间的因果关系,利用混合因果逻辑模型对尾矿坝事故风险进行了定量和定性的推理和分析,并构建了相应的知识图谱。研究结果表明:该方法能够综合考虑尾矿坝事故风险的复杂性和不确定性,从多个角度以图形化方式描述事故的演化机理,为尾矿坝风险管理提供了一种有效工具。 展开更多
关键词 混合因果逻辑 知识图谱 尾矿坝事故 风险评估
在线阅读 下载PDF
A Kind of Fuzzy Causal Diagnosis Method 被引量:1
9
作者 王庆林 卢冬 +1 位作者 李宁 陈锦娣 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期264-269,共6页
Aim To improve the causal diagnosis method presented by Bandekar and propose a new method of finding the root fault order according to the fault possibility by means of numerical calculation. Methods Based on the ca... Aim To improve the causal diagnosis method presented by Bandekar and propose a new method of finding the root fault order according to the fault possibility by means of numerical calculation. Methods Based on the causal graph, by utilization of fuzzified threshold value and fuzzy discrimination matrix, a kind of fuzzy causal diagnosis method was given and the fault possibility of each elements in the root fault candidate set (RFCS) was obtained. Results and Conclusion The order of each element in the RFCS can be obtained by the fault possibility, which makes the location of fault much easier. The diagnosis speed of this method is quite high, and by means of the fuzzified threshold value and fuzzy discrimination matrix, the result is more robust to noises and bad parameter's choice. 展开更多
关键词 fault diagnosis causal graph threshold value fuzzy discrimination
在线阅读 下载PDF
交通事故致因知识图谱构建及风险因素挖掘 被引量:1
10
作者 王占中 张书源 +2 位作者 杨萌 兰若冰 吴智豪 《同济大学学报(自然科学版)》 北大核心 2025年第4期611-618,共8页
利用交通事故调查报告中的数据,构建交通事故致因知识图谱并分析风险因素。首先,基于微调通用信息抽取统一框架预训练模型,构建适用于低数据量的交通事故致因命名实体识别模型,并生成实体集;其次,通过结构化处理和本体构建,利用图数据库... 利用交通事故调查报告中的数据,构建交通事故致因知识图谱并分析风险因素。首先,基于微调通用信息抽取统一框架预训练模型,构建适用于低数据量的交通事故致因命名实体识别模型,并生成实体集;其次,通过结构化处理和本体构建,利用图数据库Neo4j存储交通事故致因知识图谱,实现可视化;再次,基于专家经验和预训练语言文本分类模型,对交通事故致因实体进行标准化;最后,构建基于交通事故致因图谱的风险因素分析方法,通过分析标准化实体的类型分布和度分布,挖掘各因素对事故的触发特征与贡献,并进行关联规则挖掘。这些方法和分析结果提供了对历史事故风险因素的深入理解与探索。 展开更多
关键词 交通运输 知识图谱 致因分析 数据挖掘 命名实体识别
在线阅读 下载PDF
基于图神经网络的去偏因果推荐
11
作者 荀亚玲 李欣意 +2 位作者 韩硕 李砚峰 王兴 《计算机应用研究》 北大核心 2025年第5期1331-1337,共7页
推荐系统通常依赖用户的历史交互数据进行模型训练,虽然能够较好地反映用户过去的行为偏好,但在捕捉用户的潜在兴趣方面存在局限性,同时也面临数据稀疏性问题;此外,推荐系统往往过度关注流行度较高的项目,而未能充分考虑用户的真实偏好... 推荐系统通常依赖用户的历史交互数据进行模型训练,虽然能够较好地反映用户过去的行为偏好,但在捕捉用户的潜在兴趣方面存在局限性,同时也面临数据稀疏性问题;此外,推荐系统往往过度关注流行度较高的项目,而未能充分考虑用户的真实偏好,进一步限制了推荐的多样性和个性化水平。针对上述问题,提出一种去偏因果推荐方法GDCR(graph neural network-based debiased causal recommendation)。首先,GDCR引入图神经网络GNN来聚合用户-项目交互图和社交网络图中的信息,过程中不仅考虑了用户对不同项目的评分差异,还根据用户之间关系的紧密程度进行深入分析,从而获取更丰富、全面的用户表示和项目表示。然后构建因果图描述数据的生成过程,并分析导致过度推荐热门项目除了受流行偏差影响外,还受到一致性偏差的影响,由此,应用后门调整策略来消除上述偏差。在MovieLens和Douban-Movie两个公开数据集上,与八种基线方法进行了对比实验,结果表明,GDCR方法相较于其他先进的推荐方法展现出显著的性能优势,进一步验证了该方法在缓解数据稀疏性问题和提升推荐准确性方面的有效性。 展开更多
关键词 推荐系统 因果推断 图神经网络 后门调整
在线阅读 下载PDF
一种注意力引导知识增强的事件因果关系识别方法
12
作者 徐博 孙晋辰 +1 位作者 林鸿飞 宗林林 《中文信息学报》 北大核心 2025年第1期89-100,共12页
事件因果关系识别是自然语言处理领域的重要任务,由于因果关系表达方式多样且以隐式表达为主,现有方法难以准确识别。该文将外部结构化知识融入事件因果关系识别任务,提出一种注意力引导知识增强的事件因果关系识别方法。首先,通过BERT... 事件因果关系识别是自然语言处理领域的重要任务,由于因果关系表达方式多样且以隐式表达为主,现有方法难以准确识别。该文将外部结构化知识融入事件因果关系识别任务,提出一种注意力引导知识增强的事件因果关系识别方法。首先,通过BERT模型对事件对及其上下文进行编码;然后,提出零跳混合匹配方案挖掘事件相关的描述型知识和关系型知识,通过注意力机制对事件的描述型知识序列进行编码,通过稠密图神经网络对事件对的关系型知识进行编码。最后,融合前三个编码模块识别事件因果关系。基于EventStoryLine和Causal-TimeBank数据集的实验结果表明,该文所构建模型的识别效果优于现有模型,在零跳概念匹配、描述性和关系型知识编码等层面均获得了识别性能的提升。 展开更多
关键词 事件抽取 因果识别 知识图谱 注意力机制 自然语言处理
在线阅读 下载PDF
“患贫”还是“患不均”?——收入水平、收入分化对劳动力流动网络的因果效应 被引量:1
13
作者 王群勇 孙倩 《人口与经济》 北大核心 2025年第2期85-103,共19页
以往文献更多关注收入水平对劳动力流动的影响,忽略了收入分化及其网络效应。基于2011—2017年中国流动人口动态监测调查数据,构建劳动力流动网络,运用时间指数随机图模型(TERGM)与反事实模拟研究了区域收入水平与区域收入分化对劳动力... 以往文献更多关注收入水平对劳动力流动的影响,忽略了收入分化及其网络效应。基于2011—2017年中国流动人口动态监测调查数据,构建劳动力流动网络,运用时间指数随机图模型(TERGM)与反事实模拟研究了区域收入水平与区域收入分化对劳动力流动网络的复杂影响。研究表明:劳动力患贫更患不均,劳动力流向高收入地区,同时从收入高分化地区流向相对平等的地区,收入分化对于劳动力流出的作用尤为显著,相比于提高地区收入水平,改善分化更有助于缓解流失。高技能和低技能劳动力存在异质性,高技能劳动力重视收入水平,倾向于流向高收入地区,对收入分化不敏感;而低技能劳动力不仅受收入水平影响,区域的收入分化水平对其具有更大的驱动作用。反事实模拟显示,若东北地区的基尼系数下降一个标准差,则劳动力流出减少约22万人,流入增加约6万人;当人均收入提高一个标准差,则劳动力流出减少约12万人,流入增加约4万人。人均收入对劳动力流动的影响更为复杂,如果没有基尼系数的改善,只有收入水平提高不一定改善劳动力流失的状况。结论揭示了收入与劳动力流动之间的复杂关系,为劳动力流动网络演化研究提供了新的视角,对于区域协调发展和人口高质量发展具有重要的政策借鉴意义。 展开更多
关键词 劳动力流动网络 收入效应 时间指数随机图模型 网络因果效应 反事实模拟
在线阅读 下载PDF
基于知识嵌入技术的事件图谱构建方法
14
作者 廖涛 冉艳霞 张顺香 《滁州学院学报》 2025年第5期17-24,70,共9页
构建基于事件的知识图谱能够有效揭示事件的发展脉络与演化规律。然而,当前大多数学者的研究聚焦于事件图谱的特定领域构建及其应用,而对于图谱中节点与边的构建细节却略显不足。为了攻克这一问题,文章结合事件与知识图谱的构建理念,提... 构建基于事件的知识图谱能够有效揭示事件的发展脉络与演化规律。然而,当前大多数学者的研究聚焦于事件图谱的特定领域构建及其应用,而对于图谱中节点与边的构建细节却略显不足。为了攻克这一问题,文章结合事件与知识图谱的构建理念,提出了一种基于事件因果关联的知识图谱嵌入模型——EventEKGE。具体而言,该模型基于知识图谱构建技术,首先将事件节点与实体节点依据事件论元类型紧密相连,同时,事件节点之间借助因果关系实现相互关联,由此构建出一个以事件和实体为节点,二者间的关系为边的事件图谱。在此基础上,设计一种基于图注意力网络的信息传递方法,以有效处理事件与事件、事件与实体、实体与实体之间的关系。最后,在CEC2.0数据集和WikiEvents数据集上的实验结果表明,该模型在多个下游任务中表现优异,显著提高了知识图谱嵌入的质量,证明了事件信息在知识表示学习中的重要性。 展开更多
关键词 知识图谱嵌入 事件图谱 因果关系 图注意力网络
在线阅读 下载PDF
图结构数据驱动的非合作集群无线通信网络拓扑推断
15
作者 侯长波 付丁一 +2 位作者 宋振 王斌 周志超 《电子与信息学报》 北大核心 2025年第10期3580-3594,共15页
集群目标通信网络在非合作场景中极大增加了电磁环境探测的难度。针对非合作环境下缺乏拓扑先验信息的挑战,该文提出基于图结构数据驱动的拓扑推断方法。通过场景假设分析与图神经网络建模,构建了基于因果推断与GNN结合的拓扑推断混合模... 集群目标通信网络在非合作场景中极大增加了电磁环境探测的难度。针对非合作环境下缺乏拓扑先验信息的挑战,该文提出基于图结构数据驱动的拓扑推断方法。通过场景假设分析与图神经网络建模,构建了基于因果推断与GNN结合的拓扑推断混合模型,其中因果推断包括多维霍克斯过程(MHP)、Peter-Clarks瞬时条件独立性检测(PCMCI)。实验表明在节点数8~13、连边概率0.45的条件下,PCMCI+GED方法的F1分数较PCMCI提升31.2%,较GCN方法提升23.9%。研究证实因果先验与图神经网络的协同机制可有效提高拓扑推断精度,50%节点特征输入的混合模型在保持93%精度的同时减少88.63%计算耗时,为大规模网络场景提供可行解决方案。 展开更多
关键词 集群无线通信网络 网络拓扑推断 因果推理 图神经网络
在线阅读 下载PDF
基于BERT和图注意力网络的医疗文本因果关系抽取算法
16
作者 刘位龙 王玎 +6 位作者 赵超 王宁 张旭 苏萍 宋书典 张娜 迟蔚蔚 《山东大学学报(医学版)》 北大核心 2025年第8期61-68,共8页
目的提出一种能够有效抽取因果关系的算法,以提高医疗领域文本处理的准确性。方法提出基于Transformer的双向编码器(bidirectional encoder representations from Transformers,BERT)和因果图注意力网络(causal graph attention network... 目的提出一种能够有效抽取因果关系的算法,以提高医疗领域文本处理的准确性。方法提出基于Transformer的双向编码器(bidirectional encoder representations from Transformers,BERT)和因果图注意力网络(causal graph attention networks,CGAT)的BERT-CGAT算法。首先构建因果关系图,利用医疗文本对BERT模型进行微调,以获得优化的实体嵌入表示;随后通过知识融合通道整合文本编码信息与因果结构,输入至图注意力网络;采用多头注意力机制并行处理不同子空间信息,增强复杂语义关系捕捉能力;最后通过双通道解码层实现实体及因果关系的同步抽取。结果在自建的糖尿病因果实体数据集上的实验表明,模型在准确率(99.74%)与召回率(81.04%)上较传统BiLSTM-CRF基线提升0.65%和16.73%,F1分数达80.83%。结论BERT-CGAT算法通过结合BERT的语义特征提取能力和图神经网络的关系建模优势,有效提升了医疗文本因果关系抽取的准确性,验证了该方法的有效性。 展开更多
关键词 医疗文本 BERT模型 图注意力网络 因果关系抽取
原文传递
结合因果强度和扩充元组的突发公共事件事理图谱构建
17
作者 任俊玲 戴景劢 《计算机工程与应用》 北大核心 2025年第11期195-203,共9页
突发公共事件对社会有严重的危害,通过对突发公共事件文本进行分析,可以辅助建立社会预警机制、提高突发公共事件的应急治理效率。由此,提出结合因果强度和扩充元组的突发公共事件事理图谱构建方法。在语料选取方面,选取新闻文本结合政... 突发公共事件对社会有严重的危害,通过对突发公共事件文本进行分析,可以辅助建立社会预警机制、提高突发公共事件的应急治理效率。由此,提出结合因果强度和扩充元组的突发公共事件事理图谱构建方法。在语料选取方面,选取新闻文本结合政策文本,保证语料的时效性和专业性。在事理图谱构建环节,基于直接因果关系词,结合语言学实现因果词扩充,根据扩充后的句法模式结合因果强度抽取因果事件句,并基于扩充后的语义元组实现事件抽取,对抽取得到的事件进行泛化和对齐,提高适用性。实验证明,该方法可以更有效地提取文本中的事件及其因果关系,据此构建的事理图谱能够体现国家应急预案文件中的治理思路,从而为辅助相关决策提供参考价值。 展开更多
关键词 事理图谱 突发公共事件 BERT 因果强度 语义元组
在线阅读 下载PDF
基于因果机制的分子属性预测
18
作者 蔡瑞初 许遵鸿 +3 位作者 陈道鑫 杨振辉 李梓健 郝志峰 《计算机工程》 北大核心 2025年第3期105-112,共8页
在量子化学领域,分子性质预测是一项基础而关键的任务,广泛应用于药物发现、化学合成预测等多个领域。随着人工智能的发展,深度学习方法在该领域得到了广泛应用。然而,当前的方法往往采用微观和宏观视图两种极端的抽象层次来对分子性质... 在量子化学领域,分子性质预测是一项基础而关键的任务,广泛应用于药物发现、化学合成预测等多个领域。随着人工智能的发展,深度学习方法在该领域得到了广泛应用。然而,当前的方法往往采用微观和宏观视图两种极端的抽象层次来对分子性质进行建模,导致难以推广到分布之外样本的挑战。化学的介观视图提供了一个有益的中间层次,通过包含与性质相关的功能基团的介观成分来描述分子性质。通过考虑这些介观成分,并从因果关系的角度对其进行建模,可以更加关注与性质相关的功能基团。为了实现该目标,提出一种介观成分识别模型。该模型基于分子数据的介观因果生成过程和变分自编码器的框架,通过学习与分子性质相关的介观成分的表示,实现对分子性质的预测。首先假设原子隐变量遵循高斯分布和语义隐子结构遵循多元伯努利分布,将分子数据输入神经网络来识别原子隐变量和语义隐子结构。接着利用识别出来的原子隐变量和语义隐子结构来预测分子性质。为了能够识别出原子隐变量和语义隐子结构,利用变分下界和稀疏项来构造模型的损失函数。实验结果表明,该模型不仅在性能上取得先进的结果,而且提供了深入的解释,为模型预测提供了更全面的理解,提高分子性质预测的准确性和泛化能力。 展开更多
关键词 分子属性预测 因果 分布外泛化 图表征 图神经网络
在线阅读 下载PDF
中国新质生产力的空间关联网络结构特征及其影响因素研究 被引量:5
19
作者 黄杰 陆洪阳 刘华军 《地域研究与开发》 北大核心 2025年第1期1-7,共7页
将新质生产力的“新”和“质”特征与生产力要素纳入评价指标体系,利用熵权法测算2011—2022年中国各省份的新质生产力发展水平,采用非线性Granger因果检验方法识别中国新质生产力的空间关联关系,运用社会网络分析方法和指数随机图模型... 将新质生产力的“新”和“质”特征与生产力要素纳入评价指标体系,利用熵权法测算2011—2022年中国各省份的新质生产力发展水平,采用非线性Granger因果检验方法识别中国新质生产力的空间关联关系,运用社会网络分析方法和指数随机图模型分析了中国新质生产力空间关联的网络结构特征及其影响因素。结果表明:2011—2022年中国新质生产力水平得到了快速提升,东部沿海地区的新质生产力水平相对较高。在新质生产力空间关联网络中,东部地区省份主要扮演着“发动机”的角色,而中西部地区则主要接受来自高水平地区的空间溢出。新质生产力空间关联关系以单向传导为主,省份间“互惠互利”的协同发展局面尚未形成。提升经济发展水平、第三产业比例、市场化水平和对外开放程度将有利于新质生产力空间关联关系的形成。地理距离和经济距离上的邻近关系促进了省域间新质生产力空间关联关系的传导,在新质生产力水平相近的省份间形成了内部流通子群。 展开更多
关键词 新质生产力 非线性Granger因果检验 社会网络分析 指数随机图模型
在线阅读 下载PDF
SP-CPGCN:用于尘肺病分期的超像素先验因果感知图卷积网络
20
作者 王月莹 纪国华 +5 位作者 冯伟毅 赵涓涓 强彦 马建芬 施熠炜 杨帆 《计算机应用研究》 北大核心 2025年第6期1873-1879,共7页
针对尘肺病灶微小微薄以及现有深度学习方法受非因果特征影响,导致尘肺分期准确率低的问题,提出基于超像素先验的因果感知图卷积网络(SP-CPGCN)。具体来说,该网络通过对超像素而非整张胸片进行特征提取以学习局部微小特征;充分考虑节点... 针对尘肺病灶微小微薄以及现有深度学习方法受非因果特征影响,导致尘肺分期准确率低的问题,提出基于超像素先验的因果感知图卷积网络(SP-CPGCN)。具体来说,该网络通过对超像素而非整张胸片进行特征提取以学习局部微小特征;充分考虑节点间的空间邻近性和特征相似性构建图网络,设计分层聚合图卷积网络利用不同深度的信息进行信息传递和特征整合。此外,提出基于图卷积网络的自适应因果推断,利用干预损失和稳定性损失相结合的因果干预策略来避免非因果特征的干扰,设计类内一致性损失来平衡个体特异性特征和群体普遍性特征。在临床尘肺病胸片数据集上的验证结果表明,SP-CPGCN的准确率为82.4%,精确率为78.9%,灵敏度为77.3%,特异度为88.6%,AUC为90.3%,均优于其他方法。实验结果表明,SP-CPGCN有效提升了尘肺病分期的准确性和稳定性,为自动化医学诊断提供了可靠的新方法。 展开更多
关键词 图神经网络 因果推断 超像素 胸片 尘肺分期
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部