期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effective suppression of surface cation segregations on double perovskite oxides through entropy engineering
1
作者 Zhe Wang Mengke Yuan +5 位作者 Juntao Gao Hongru Hao Jingwei Li Lingling Xu Zhe Lv Bo Wei 《Journal of Rare Earths》 2025年第2期345-353,I0005,共10页
Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been... Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been widely studied as an active cathode but still suffer from serious detrimental segregations.To enhance the cathode stability,a PBCC derived A-site medium-entropy Pr_(0.6)La_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Ba_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(ME-PBCC)oxide was prepared and its segregation behaviors were investigated under different conditions.Compared with initial PBCC oxide,the segregations of BaO and Co_(3)O_(4)on the surface of ME-PBCC material are significantly suppressed,especially for Co_(3)O_(4),which is attributed to its higher configuration entropy.Our results also confirm the improved electrochemical performance and structural stability of ME-PBCC material,enabling it as a promising cathode for SOFCs. 展开更多
关键词 Solid oxide fuel cells CATHODE Double perovskite Configuration entropy cation segregation Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部