The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte...The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well...In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes...The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.展开更多
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t...A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.展开更多
With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Elec...With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.展开更多
Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemist...Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials.This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1)O_(2).The results of the density functional theory(DFT)calculations indicate that the electrons of the O 2p occupy a higher energy level.In the ex-situ X-ray photoelectron spectrometer(XPS)of O 1s,the addition of Fe facilitates the lattice oxygen(O^(n-))to exhibit enhanced activity at 4.45 V.The in-situ X-ray diffraction(XRD)demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages.Furthermore,the Galvanostatic Intermittent Titration Technique(GITT)data indicate that Fe doping significantly increases the Na~+migration rate at high voltages.Consequently,the substitution of Fe can elevate the cut-off voltage to 4.45 V,thereby facilitating electron migration from O^(2-).The redox of O^(2-)/O^(n-)(n<2)contributes to the overall capacity.O3-Na(Ni_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1))_(0.92)Fe_(0.08)O_(2)provides an initial discharge specific capacity of 180.55 mA h g^(-1)and71.6%capacity retention at 0.5 C(1 C=240 mA g^(-1)).This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O^(2-)in 03-type layered oxides,but also guarantees the structural integrity of the cathode materials at high voltages(>4.2 V).It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Spherical and homogeneously mixed metal hydroxide Ni0.8Co0.1Mn0.1(OH)2 precursor was successfully synthesized by co-precipitation method in a simple and small vessel with the volume of 1L.The conditions of synthetic...Spherical and homogeneously mixed metal hydroxide Ni0.8Co0.1Mn0.1(OH)2 precursor was successfully synthesized by co-precipitation method in a simple and small vessel with the volume of 1L.The conditions of synthetic process including amount of chelating agent,stirring speed and temperature were studied.LiNi0.8Co0.1Mn0.1O2 samples were obtained by calcinating the precursors.The crystal structure,morphology and electrochemical properties were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),charge-discharge test,AC impedance and cyclic voltammetry.In the voltage range of 2.8-4.3 V,the initial discharge capacities of LiNi0.8Co0.1Mn0.1O2 at 0.1C and 1C rates were 199 and 170 mA·h/g,respectively.After 80 cycles at 1C,the discharge capacity retention was 92%,suggesting its promising application as the cathode material for Li-ion batteries.展开更多
Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a m...Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes.展开更多
Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performa...Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development.展开更多
P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still...P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries.展开更多
Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dua...Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dual-defect engineering strategy is implemented by introducing boron-doping and phosphorusvacancy sites with MoP@NC composite as the precursor.Based on the experimental characterizations and theoretical calculations,B-MoP_(1-x)@NC-based electrode presents low oxidation potential,high lithium diffusivity,small Tafel slope and strong adsorption capability for polysulfides,which is beneficial to enhance the adsorption capability for LiPSs,reduce the lithium diffusion energy barriers and Gibbs free energy for the conversion reactions of LiPSs.As demonstrated,the corresponding Li-S/B-MoP1-x@NC batteries can remain high reversible capacity of 753 mAh/g at 0.5 C after 300 cycles,and keep a stable capacity of 520 mAh/g at 0.5 C after 100 cycles even at the high-loading content of 5.1mg/cm^(2).According to the results of in-situ UV–vis spectra,the satisfactory battery performance majorly originates from the existence of dual-defect characteristics in B-MoP1-x@NC catalyst,which effectively promotes the conversion reaction kinetics of LiPSs,and restrains the shuttle behavior of LiPSs.The key ideas of this work will enlighten the development of catalytic cathode materials for sulfur-based secondary batteries.展开更多
With large-scale commercial applications of lithium-ion batteries(LIBs),lots of spent LIBs will be produced and cause huge waste of resources and greatly increased environmental problems.Thus,recycling spent LIB mater...With large-scale commercial applications of lithium-ion batteries(LIBs),lots of spent LIBs will be produced and cause huge waste of resources and greatly increased environmental problems.Thus,recycling spent LIB materials is inevitable.Due to high added-value features,converting spent LIB cathode materials into catalysts exhibits broad application prospects.Inspired by this,we review the high-added-value reutilization of spent LIB materials toward catalysts of energy conversion.First,the failure mechanism of spent LIB cathode materials are discussed,and then the transformation and modification strategies are summarized and analyzed to improve the transformation efficiency of failed cathode materials and the catalytic performance of catalysts,respectively.Moreover,the electrochemical applications of failed cathode material derived catalysts are introduced,and the key problems and countermeasures are analyzed and proposed.Finally,the future development trend and prospect of high-added-value reutilization for spent LIB cathode materials toward catalysts are also given.This review will predictably advance the awareness of valorizing spent lithium-ion battery cathode materials for catalysis.展开更多
Anti-perovskite cathodes,typified by Li_(2)FeSO,hold great promise for Li-ion batteries due to their high specific capacity,cost-effectiveness,and ease of production.However,their utilization in high-energydensity bat...Anti-perovskite cathodes,typified by Li_(2)FeSO,hold great promise for Li-ion batteries due to their high specific capacity,cost-effectiveness,and ease of production.However,their utilization in high-energydensity batteries is hindered by low Li intercalation voltage and limited rate performance.This study employs first-principles calculations to assess the impact of element substitutions and doping on the voltage and Li-ion migration energy barrier in Li_(2)TMSO(TM=Cu,Ni,Co,Fe,V,Cr,Ti)anti-perovskite materials.Our findings reveal that replacing the S element with Se or Te in Li_(2)FeSO and Li_(2)MnSO can reduce the voltage.For Li_(2)TMSO(TM=Cu,Ni,Co,Fe,V,Cr,Ti),the voltage increases as TM changes from Ti to Ni.This process closely related to the downward shift of the TM-3d electron orbital energy level.When the energy level difference between TM-3d and S-3p orbital energy levels is large,the voltage is determined by TM-3d orbitals.When the difference is small,S-3p participates in the reaction.Additionally,doping with the inactive element Mg could allow deeper energy level electrons to participate in the reaction,thus increasing the voltage.To simultaneously enhance intercalation voltage and rate performance,we investigated multi-element doping strategies for anti-perovskite cathode materials.Our study establishes a solid foundation the development of high-voltage anti-perovskite cathodes,holding promise for significant advancements in energy storage technology.展开更多
Ni-rich cathode materials have become the mainstream choice in the mileage electric vehicle sector due to their high specific capacity and safety factor.However,the volume changes occurring during charging and dischar...Ni-rich cathode materials have become the mainstream choice in the mileage electric vehicle sector due to their high specific capacity and safety factor.However,the volume changes occurring during charging and discharging lead to microcracking and surface remodeling,posing challenges to achieving such as high specific capacity and long cycle stability.This paper reviews existing modification strategies for Ni-rich layered oxide cathode materials.Unlike previous reviews and related papers,we comprehensively discuss a variety of modification strategies and deeply discuss the synergistic modification effect of surface coating and bulk doping,which is how to improve the cycling stability of the Ni-rich cathode.In addition,based on recent research advances,the prospects and challenges of modifying Ni-rich layered cathodes for cycle stability upgrading of the lithium-ion battery,as well as the potential application prospects in the field of power automobiles,are comprehensively analyzed.展开更多
Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To o...Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To overcome this obstacle,a δ-MnO_(2)/MXene heterostructure was created using a simple one-step process under gentle condition.The ZHSC was assembled using this heterostructure as the cathode,activated carbon(AC)as the anode and 2 mol·L−1 ZnSO_(4) as the electrolyte.The resultingδ-MnO_(2)/MXene//ZnSO4//AC ZHSC shows a maximum specific capacitance of 97.4 F·g^(−1) and an energy density of 32.27 Wh·kg^(−1) at the best cathode-to-anode mass ratio.Ex situ characterizations reveal the reversible energy storage mechanism combing Zn^(2+)insertion/extraction in the cathode,ion adsorption and desorption on the anode surface,and partial reversible formation and dissolution of Zn_(4)SO_(4)(OH)_(6)·5H_(2)O(ZHS)components on both electrodes.Adding of Mn^(2+)to the electrolyte reduced Mn dissolution,improving the ZHSC’s specific capacitance and energy density to 140.4 F·g^(−1) and 49.36 Wh·kg^(−1),respectively,while also enhancing its rate performance and cyclability.The improved electrochemical reaction kinetics was verified through various tests.The results suggest that the δ-MnO_(2)/MXene heterostructure has great potential as a high-performance cathode material for ZHSCs.展开更多
Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To addr...Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability.展开更多
This study focuses on using a green reagent scheme of methanesulfonic acid (MSA) and citric acid (CA) to extract valuable metals from the cathodes, aiming to minimize environmental impact during the recycling process....This study focuses on using a green reagent scheme of methanesulfonic acid (MSA) and citric acid (CA) to extract valuable metals from the cathodes, aiming to minimize environmental impact during the recycling process. Leaching studies on LiCoO_(2) identified optimal conditions as follows: 2.4 mol/L MSA, 1.6 mol/L CA, S/L ratio of 80 g/L, leaching temperature of 90oC and leaching time of 6 h. The maximum Co and Li extraction achieved was 92% and 85%, respectively. LiCoO_(2) dissolution in MSA-CA leaching solution is highly impacted by temperature;Avrami equation showed a good fitting for the leaching data. The experimental activation energy of Co and Li was 50.98 kJ/mol and 50.55 kJ/mol, respectively, indicating that it is a chemical reaction-controlled process. Furthermore, cobalt was efficiently recovered from the leachate using oxalic acid, achieving a precipitation efficiency of 99.91% and a high-purity cobalt oxalate product (99.85 wt.%). In the MSA-CA leaching solution, MSA served as a lixiviant, while CA played a key role in reducing Co in LiCoO_(2). The overall organic acid leaching methodology presents an attractive option due to its reduced environmental impact.展开更多
基金supported by the Low-Cost Long-Life Batteries program,China(No.WL-24-08-01)the National Natural Science Foundation of China(No.22279007)。
文摘The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金the National Natural Science Foundation of China Key Program(No.U22A20420)Changzhou Leading Innovative Talents Introduction and Cultivation Project(No.CQ20230109)for supporting our work。
文摘In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金the support from the National Natural Science Foun-dation of China(Grant No.U21A20311)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University,Riyadh,Saudi Arabia.
文摘The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.
基金National Natural Science Foundation of China(Nos.52174269,52374293)Science and Technology Innovation Program of Hunan Province,China(Nos.2024CK1009,2022RC1123)。
文摘A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.
基金supported by the National Natural Science Foundation of China(No.52072217)the National Key Research and Development Program of China(No.2022YFB3807700)+2 种基金the Joint Funds of the Hubei Natural Science Foundation Innovation and Development(No.2022CFD034)Hubei Natural Science Foundation Innovation Group Project(No.2022CFA020)the Major Technological Innovation Project of Hubei Science and Technology Department(No.2019AAA164).
文摘With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.
基金financial support from the Natural Science Foundation of Shandong Province of China(ZR2023ME051,ZR2019MEM020)。
文摘Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials.This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1)O_(2).The results of the density functional theory(DFT)calculations indicate that the electrons of the O 2p occupy a higher energy level.In the ex-situ X-ray photoelectron spectrometer(XPS)of O 1s,the addition of Fe facilitates the lattice oxygen(O^(n-))to exhibit enhanced activity at 4.45 V.The in-situ X-ray diffraction(XRD)demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages.Furthermore,the Galvanostatic Intermittent Titration Technique(GITT)data indicate that Fe doping significantly increases the Na~+migration rate at high voltages.Consequently,the substitution of Fe can elevate the cut-off voltage to 4.45 V,thereby facilitating electron migration from O^(2-).The redox of O^(2-)/O^(n-)(n<2)contributes to the overall capacity.O3-Na(Ni_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1))_(0.92)Fe_(0.08)O_(2)provides an initial discharge specific capacity of 180.55 mA h g^(-1)and71.6%capacity retention at 0.5 C(1 C=240 mA g^(-1)).This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O^(2-)in 03-type layered oxides,but also guarantees the structural integrity of the cathode materials at high voltages(>4.2 V).It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘Spherical and homogeneously mixed metal hydroxide Ni0.8Co0.1Mn0.1(OH)2 precursor was successfully synthesized by co-precipitation method in a simple and small vessel with the volume of 1L.The conditions of synthetic process including amount of chelating agent,stirring speed and temperature were studied.LiNi0.8Co0.1Mn0.1O2 samples were obtained by calcinating the precursors.The crystal structure,morphology and electrochemical properties were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),charge-discharge test,AC impedance and cyclic voltammetry.In the voltage range of 2.8-4.3 V,the initial discharge capacities of LiNi0.8Co0.1Mn0.1O2 at 0.1C and 1C rates were 199 and 170 mA·h/g,respectively.After 80 cycles at 1C,the discharge capacity retention was 92%,suggesting its promising application as the cathode material for Li-ion batteries.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00446825)by the Technology Innovation Program(RS-2024-00418815)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes.
基金supported by the National Key R&D Program of China(2022YFA1203400)the National Natural Science Foundation of China(W2441009)。
文摘Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development.
基金supported by the National Key Scientific Research Project(No.2022YFB2502300)the National Natural Science Foundation of China(No.52071085).
文摘P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries.
基金financial support from National Natural Science Foundation of China(No.52101250)Hebei Provincial Natural Science Foundation(Nos.E2021208031 and B2021208069)+6 种基金S&T program of Hebei(Nos.215A4401D and 225A4404D)Research Fund of the Innovation Platform for Academicians of Hainan Province(No.YSPTZX202315)Collaborative Innovation Center of Marine Science and Technology of Hainan University(No.XTCX2022HYC14)partially supported by the Pico Election Microscopy Center of Hainan UniversityFundamental Research Funds for the Hebei University(No.2021YWF11)Science Research Project of Hebei Education Department(No.QN2024087)Xingtai City Natural Science Foundation(No.2023ZZ027)
文摘Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dual-defect engineering strategy is implemented by introducing boron-doping and phosphorusvacancy sites with MoP@NC composite as the precursor.Based on the experimental characterizations and theoretical calculations,B-MoP_(1-x)@NC-based electrode presents low oxidation potential,high lithium diffusivity,small Tafel slope and strong adsorption capability for polysulfides,which is beneficial to enhance the adsorption capability for LiPSs,reduce the lithium diffusion energy barriers and Gibbs free energy for the conversion reactions of LiPSs.As demonstrated,the corresponding Li-S/B-MoP1-x@NC batteries can remain high reversible capacity of 753 mAh/g at 0.5 C after 300 cycles,and keep a stable capacity of 520 mAh/g at 0.5 C after 100 cycles even at the high-loading content of 5.1mg/cm^(2).According to the results of in-situ UV–vis spectra,the satisfactory battery performance majorly originates from the existence of dual-defect characteristics in B-MoP1-x@NC catalyst,which effectively promotes the conversion reaction kinetics of LiPSs,and restrains the shuttle behavior of LiPSs.The key ideas of this work will enlighten the development of catalytic cathode materials for sulfur-based secondary batteries.
基金supported by the National Key Research and Development Program of China(No.2023YFB3809300).
文摘With large-scale commercial applications of lithium-ion batteries(LIBs),lots of spent LIBs will be produced and cause huge waste of resources and greatly increased environmental problems.Thus,recycling spent LIB materials is inevitable.Due to high added-value features,converting spent LIB cathode materials into catalysts exhibits broad application prospects.Inspired by this,we review the high-added-value reutilization of spent LIB materials toward catalysts of energy conversion.First,the failure mechanism of spent LIB cathode materials are discussed,and then the transformation and modification strategies are summarized and analyzed to improve the transformation efficiency of failed cathode materials and the catalytic performance of catalysts,respectively.Moreover,the electrochemical applications of failed cathode material derived catalysts are introduced,and the key problems and countermeasures are analyzed and proposed.Finally,the future development trend and prospect of high-added-value reutilization for spent LIB cathode materials toward catalysts are also given.This review will predictably advance the awareness of valorizing spent lithium-ion battery cathode materials for catalysis.
基金financially supported by the Program of the National Natural Science Foundation of China(No.22209067)Stable Support Plan Program for Higher Education Institutions(No.20220814235931001)+4 种基金Shenzhen Science and Technology Program(No.KQTD20200820113047086)supported by XXX-Project(No.2020-XXXX-XX-246-00)supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22hytd01)supported by 21C Innovation Laboratory,Contemporary Amperex Technology Ltd.(No.C-ND-21C LAB-210044-1.0)by Center for Computational Science and Engineering at Southern University of Science and Technology。
文摘Anti-perovskite cathodes,typified by Li_(2)FeSO,hold great promise for Li-ion batteries due to their high specific capacity,cost-effectiveness,and ease of production.However,their utilization in high-energydensity batteries is hindered by low Li intercalation voltage and limited rate performance.This study employs first-principles calculations to assess the impact of element substitutions and doping on the voltage and Li-ion migration energy barrier in Li_(2)TMSO(TM=Cu,Ni,Co,Fe,V,Cr,Ti)anti-perovskite materials.Our findings reveal that replacing the S element with Se or Te in Li_(2)FeSO and Li_(2)MnSO can reduce the voltage.For Li_(2)TMSO(TM=Cu,Ni,Co,Fe,V,Cr,Ti),the voltage increases as TM changes from Ti to Ni.This process closely related to the downward shift of the TM-3d electron orbital energy level.When the energy level difference between TM-3d and S-3p orbital energy levels is large,the voltage is determined by TM-3d orbitals.When the difference is small,S-3p participates in the reaction.Additionally,doping with the inactive element Mg could allow deeper energy level electrons to participate in the reaction,thus increasing the voltage.To simultaneously enhance intercalation voltage and rate performance,we investigated multi-element doping strategies for anti-perovskite cathode materials.Our study establishes a solid foundation the development of high-voltage anti-perovskite cathodes,holding promise for significant advancements in energy storage technology.
基金supported by the Science and Technology Research Project of Changchun City(24GXYSZZ01)the Natural Science Foundation of Jilin Province(NO.20220101036JC)。
文摘Ni-rich cathode materials have become the mainstream choice in the mileage electric vehicle sector due to their high specific capacity and safety factor.However,the volume changes occurring during charging and discharging lead to microcracking and surface remodeling,posing challenges to achieving such as high specific capacity and long cycle stability.This paper reviews existing modification strategies for Ni-rich layered oxide cathode materials.Unlike previous reviews and related papers,we comprehensively discuss a variety of modification strategies and deeply discuss the synergistic modification effect of surface coating and bulk doping,which is how to improve the cycling stability of the Ni-rich cathode.In addition,based on recent research advances,the prospects and challenges of modifying Ni-rich layered cathodes for cycle stability upgrading of the lithium-ion battery,as well as the potential application prospects in the field of power automobiles,are comprehensively analyzed.
基金supported by Natural Science Foundation of Ningxia Province,China(No.2023AAC05047)Special Project for the Central-Guided Local Science and Technology Development(No.2024FRD05062)+1 种基金Graduate Student Innovation Project of North Minzu University(No.YCX24102)Ningxia Science and Technology Innovation Team for Key Materials and Devices in High-Performance Secondary Batteries(No.2024CXTD003).
文摘Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To overcome this obstacle,a δ-MnO_(2)/MXene heterostructure was created using a simple one-step process under gentle condition.The ZHSC was assembled using this heterostructure as the cathode,activated carbon(AC)as the anode and 2 mol·L−1 ZnSO_(4) as the electrolyte.The resultingδ-MnO_(2)/MXene//ZnSO4//AC ZHSC shows a maximum specific capacitance of 97.4 F·g^(−1) and an energy density of 32.27 Wh·kg^(−1) at the best cathode-to-anode mass ratio.Ex situ characterizations reveal the reversible energy storage mechanism combing Zn^(2+)insertion/extraction in the cathode,ion adsorption and desorption on the anode surface,and partial reversible formation and dissolution of Zn_(4)SO_(4)(OH)_(6)·5H_(2)O(ZHS)components on both electrodes.Adding of Mn^(2+)to the electrolyte reduced Mn dissolution,improving the ZHSC’s specific capacitance and energy density to 140.4 F·g^(−1) and 49.36 Wh·kg^(−1),respectively,while also enhancing its rate performance and cyclability.The improved electrochemical reaction kinetics was verified through various tests.The results suggest that the δ-MnO_(2)/MXene heterostructure has great potential as a high-performance cathode material for ZHSCs.
基金supported by the National Natural Science Foundation of China(Nos.52122408,52071023)the Program for Science&Technology Innovation Talents in the University of Henan Province(No.22HASTIT1006)+2 种基金the Program for Central Plains Talents(No.ZYYCYU202012172)the Ministry of Education,Singapore(No.RG70/20)the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,Henan University of Science and Technology(No.HKDNM201906).
文摘Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability.
文摘This study focuses on using a green reagent scheme of methanesulfonic acid (MSA) and citric acid (CA) to extract valuable metals from the cathodes, aiming to minimize environmental impact during the recycling process. Leaching studies on LiCoO_(2) identified optimal conditions as follows: 2.4 mol/L MSA, 1.6 mol/L CA, S/L ratio of 80 g/L, leaching temperature of 90oC and leaching time of 6 h. The maximum Co and Li extraction achieved was 92% and 85%, respectively. LiCoO_(2) dissolution in MSA-CA leaching solution is highly impacted by temperature;Avrami equation showed a good fitting for the leaching data. The experimental activation energy of Co and Li was 50.98 kJ/mol and 50.55 kJ/mol, respectively, indicating that it is a chemical reaction-controlled process. Furthermore, cobalt was efficiently recovered from the leachate using oxalic acid, achieving a precipitation efficiency of 99.91% and a high-purity cobalt oxalate product (99.85 wt.%). In the MSA-CA leaching solution, MSA served as a lixiviant, while CA played a key role in reducing Co in LiCoO_(2). The overall organic acid leaching methodology presents an attractive option due to its reduced environmental impact.